一、简介
"""
@Author :叶庭云
@公众号 :AI庭云君
@CSDN :https://yetingyun.blog.csdn.net/
"""
Python的数据类型集合:由不同元素组成的集合,集合中是一组无序排列的可 Hash 的值(不可变类型),可以作为字典的Key
Pandas中的DataFrame:DataFrame是一个表格型的数据结构,可以理解为带有标签的二维数组。
常用的集合操作如下图所示:
二、交集
- pandas的 merge 功能默认为 inner 连接,可以实现取交集
- 集合 set 可以直接用 & 取交集
import pandas as pd
print("CSDN叶庭云:https://yetingyun.blog.csdn.net/")
set1 ={"Python","Go","C++","Java"}
set2 ={"Go","C++","JavaScript","C"}
set1 & set2
df1 = pd.DataFrame([['1','Python'],['2','Go'],['3','C++'],['4','Java'],], columns=['id','name'])
df2 = pd.DataFrame([['2','Go'],['3','C++'],['5','JavaScript'],['6','C'],], columns=['id','name'])
pd.merge(df1, df2, on=['id','name'])
操作如下所示:
三、并集
- Pandas的 merge 方法里参数 how 的取值有 “left”, “right”, “inner”, “outer”,默认是inner。outer外连接可以实现取并集。另一种方法也可以df1.append(df2)后去重,保留第一次出现的也可以实现取并集。
- 集合 set 可以直接用 | 取并集
set1 ={"Python","Go","C++","Java"}
set2 ={"Go","C++","JavaScript","C"}
set1 | set2
print("CSDN叶庭云:https://yetingyun.blog.csdn.net/")
df1 = pd.DataFrame([['1','Python'],['2','Go'],['3','C++'],['4','Java'],], columns=['id','name'])
df2 = pd.DataFrame([['2','Go'],['3','C++'],['5','JavaScript'],['6','C'],], columns=['id','name'])
pd.merge(df1, df2,
on=['id','name'],
how='outer')
df3 = df1.append(df2)
df3.drop_duplicates(subset=['id'], keep="first")
四、差集
set1 ={"Python","Go","C++","Java"}
set2 ={"Go","C++","JavaScript","C"}
set1 - set2
print("CSDN叶庭云:https://yetingyun.blog.csdn.net/")
set1 ={"Python","Go","C++","Java"}
set2 ={"Go","C++","JavaScript","C"}
set2 - set1
# df1-df2
df1 = pd.DataFrame([['1','Python'],['2','Go'],['3','C++'],['4','Java'],], columns=['id','name'])
df2 = pd.DataFrame([['2','Go'],['3','C++'],['5','JavaScript'],['6','C'],], columns=['id','name'])
df1 = df1.append(df2)
df1 = df1.append(df2)
set_diff_df = df1.drop_duplicates(subset=df1.columns,
keep=False)
set_diff_df
# df2-df1
df1 = pd.DataFrame([['1','Python'],['2','Go'],['3','C++'],['4','Java'],], columns=['id','name'])
df2 = pd.DataFrame([['2','Go'],['3','C++'],['5','JavaScript'],['6','C'],], columns=['id','name'])print("CSDN叶庭云:https://yetingyun.blog.csdn.net/")
df2 = df2.append(df1)
df2 = df2.append(df1)
set_diff_df = df2.drop_duplicates(subset=df2.columns,
keep=False)
set_diff_df
# df1-df2
df1 = pd.DataFrame([['1','Python'],['2','Go'],['3','C++'],['4','Java'],], columns=['id','name'])
df2 = pd.DataFrame([['2','Go'],['3','C++'],['5','JavaScript'],['6','C'],], columns=['id','name'])
pd.concat([df1, df2, df2]).drop_duplicates(keep=False)# df2-df1
df1 = pd.DataFrame([['1','Python'],['2','Go'],['3','C++'],['4','Java'],], columns=['id','name'])
df2 = pd.DataFrame([['2','Go'],['3','C++'],['5','JavaScript'],['6','C'],], columns=['id','name'])
pd.concat([df2, df1, df1]).drop_duplicates(keep=False)
五、对称差集
print("CSDN叶庭云:https://yetingyun.blog.csdn.net/")
set1 ={"Python","Go","C++","Java"}
set2 ={"Go","C++","JavaScript","C"}
set1 ^ set2 # 对称差集# 去重 不保留重复的:即可实现取对称差集
df3 = df1.append(df2)
df3.drop_duplicates(subset=['id'], keep=False)
推荐学习:
本文转载自: https://blog.csdn.net/fyfugoyfa/article/details/122588761
版权归原作者 叶庭云 所有, 如有侵权,请联系我们删除。
版权归原作者 叶庭云 所有, 如有侵权,请联系我们删除。