0


hadoop 实现数据排序

前言

在很多业务场景下,需要对原始的数据读取分析后,将输出的结果按照指定的业务字段进行排序输出,方便上层应用对结果数据进行展示或使用,减少二次排序的成本

在hadoop的MapReduce中,提供了对于客户端的自定义排序的功能相关API

MapReduce排序

  • 默认情况下,MapTask 和ReduceTask均会对数据按照key进行排序
  • 默认的排序按照字典序,且实现排序的方法是快排

MapReduce排序分类

1、部分排序

MapReduce根据输入记录的键值对数据集总体排序,确保输出的文件内部数据有序

2、全排序

最终的输出结果只有一个文件,且内部有序,实现方式是只设置一个ReduceTask,但是这种做法在处理的某个文件特别大的时候,效率会非常低,这也就丧失了MapReduce提供的并行处理任务的能力

3、辅助排序

在Reduce端对key进行分组,比如说,在接收的key为bean对象的时候,想让一个或多个字段相同的key进入到同一个reduce方法时,可以采用分组排序

4、二次排序

在自定义排序中,compareto的判断条件为两个或者多个时即为二次排序

自定义排序案例

还记得在序列化一篇中,那个针对手机号的峰


本文转载自: https://blog.csdn.net/zhangcongyi420/article/details/122288681
版权归原作者 小码农叔叔 所有, 如有侵权,请联系我们删除。

“hadoop 实现数据排序”的评论:

还没有评论