1.概念
Zookeeper使用⼀种称为Zookeeper Atomic Broadcast(ZAB,Zookeeper原⼦消息⼴播协议)的协议作为其数据⼀致性的核⼼算法。
ZAB协议并不像Paxos算法那样 是⼀种通⽤的分布式⼀致性算法,它是⼀种特别为Zookeeper专⻔设计的⼀种⽀持崩溃恢复的原⼦⼴播协议。
在Zookeeper中,主要就是依赖ZAB协议来实现分布式数据的⼀致性,基于该协议, Zookeeper实现了⼀种主备模式的系统架构来保持集群中各副本之间的数据的⼀致性,表现形式就是 使⽤⼀个单⼀的主进程来接收并处理客户端的所有事务请求,并采⽤ZAB的原⼦⼴播协议,将服务器数据的状态变更以事务Proposal的形式⼴播到所有的副本进程中, ZAB协议的主备模型架构保证了同⼀时刻集群中只能够有⼀个主进程来⼴播服务器的状态变更,因此能够很好地处理客户端⼤量的并发请求。但是,也要考虑到主进程在任何时候都有可能出现崩溃退出或重启现象,因此,ZAB协议还需要做到当前主进程当出现上述异常情况的时候,依旧能正常⼯作。
2.ZAB核心
ZAB协议的核⼼是定义了对于那些会改变Zookeeper服务器数据状态的事务请求的处理⽅式。即:
所有事务请求必须由⼀个全局唯⼀的服务器来协调处理,这样的服务器被称为Leader服务器,余下的服务器则称为Follower服务器, Leader服务器负责将⼀个客户端事务请求转化成⼀个事务Proposal(提议),并将该Proposal分发给集群中所有的Follower服务器,之后Leader服务器需要等待所有Follower服务器的反馈,⼀旦超过半数的Follower服务器进⾏了正确的反馈后,那么Leader就会再次向所有的Follower服务器分发Commit消息,要求其将前⼀个Proposal进⾏提交。
3.ZAB协议介绍
ZAB协议包括两种基本的模式: 崩溃恢复和消息⼴播。
进⼊崩溃恢复模式:
当整个服务框架启动过程中,或者是Leader服务器出现⽹络中断、崩溃退出或重启等异常情况时, ZAB协议就会进⼊崩溃恢复模式,同时选举产⽣新的Leader服务器。当选举产⽣了新的Leader服务器,同时集群中已经有过半的机器与该Leader服务器完成了状态同步之后, ZAB协议就会退出恢复模式,其中,所谓的状态同步 就是指数据同步,⽤来保证集群中过半的机器能够和Leader服务器的数据状态保持⼀致
进⼊消息⼴播模式:
当集群中已经有过半的Follower服务器完成了和Leader服务器的状态同步,那么整个服务框架就可以进⼊消息⼴播模式, 当⼀台同样遵守ZAB协议的服务器启动后加⼊到集群中,如果此时集群中已经存在⼀个Leader服务器在负责进⾏消息⼴播,那么加⼊的服务器就会⾃觉地进⼊数据恢复模式:找到Leader所在的服务器,并与其进⾏数据同步,然后⼀起参与到消息⼴播流程中去。 Zookeeper只允许唯⼀的⼀个Leader服务器来进⾏事务请求的处理, Leader服务器在接收到客户端的事务请求后,会⽣成对应的事务提议并发起⼀轮⼴播协议,⽽如果集群中的其他机器收到客户端的事务请求后,那么这些⾮Leader服务器会⾸先将这个事务请求转发给Leader服务器。
3.1 消息广播
ZAB协议的消息⼴播过程使⽤原⼦⼴播协议,类似于⼀个⼆阶段提交过程,针对客户端的事务请求,Leader服务器会为其⽣成对应的事务Proposal,并将其发送给集群中其余所有的机器,然后再分别收集各⾃的选票,最后进⾏事务提交。
在ZAB的⼆阶段提交过程中,移除了中断逻辑,所有的Follower服务器要么正常反馈Leader提出的事务Proposal,要么就抛弃Leader服务器,同时, ZAB协议将⼆阶段提交中的中断逻辑移除意味着我们可以在过半的Follower服务器已经反馈Ack之后就开始提交事务Proposal了,⽽不需要等待集群中所有的Follower服务器都反馈响应,但是,在这种简化的⼆阶段提交模型下,⽆法处理因Leader服务器崩溃退出⽽带来的数据不⼀致问题,因此ZAB采⽤了崩溃恢复模式来解决此问题,另外,整个消息⼴播协议是基于具有FIFO特性的TCP协议来进⾏⽹络通信的,因此能够很容易保证消息⼴播过程中消息接受与发送的顺序性。
在整个消息⼴播过程中, Leader服务器会为每个事务请求⽣成对应的Proposal来进⾏⼴播,并且在⼴播事务Proposal之前, Leader服务器会⾸先为这个事务Proposal分配⼀个全局单调递增的唯⼀ID,称之为事务ID(ZXID),由于ZAB协议需要保证每个消息严格的因果关系,因此必须将每个事务Proposal按照其ZXID的先后顺序来进⾏排序和处理。
具体的过程:在消息⼴播过程中, Leader服务器会为每⼀个Follower服务器都各⾃分配⼀个单独的队列,然后将需要⼴播的事务 Proposal 依次放⼊这些队列中去,并且根据 FIFO策略进⾏消息发送。每⼀个Follower服务器在接收到这个事务Proposal之后,都会⾸先将其以事务⽇志的形式写⼊到本地磁盘中去,并且在成功写⼊后反馈给Leader服务器⼀个Ack响应。当Leader服务器接收到超过半数Follower的Ack响应后,就会⼴播⼀个Commit消息给所有的Follower服务器以通知其进⾏事务提交,同时Leader⾃身也会完成对事务的提交,⽽每⼀个Follower服务器在接收到Commit消息后,也会完成对事务的提交。
3.2 崩溃恢复
ZAB协议的这个基于原⼦⼴播协议的消息⼴播过程,在正常情况下运⾏⾮常良好,但是⼀旦在Leader服务器出现崩溃,或者由于⽹络原因导致Leader服务器失去了与过半Follower的联系,那么就会进⼊崩溃恢复模式。在ZAB协议中,为了保证程序的正确运⾏,整个恢复过程结束后需要选举出⼀个新的Leader服务器,因此, ZAB协议需要⼀个⾼效且可靠的Leader选举算法,从⽽保证能够快速地选举出新的Leader,同时, Leader选举算法不仅仅需要让Leader⾃身知道已经被选举为Leader,同时还需要让集群中的所有其他机器也能够快速地感知到选举产⽣出来的新Leader服务器。
3.3 基本特性
根据上⾯的内容,我们了解到, ZAB协议规定了如果⼀个事务Proposal在⼀台机器上被处理成功,那么应该在所有的机器上都被处理成功,哪怕机器出现故障崩溃。接下来我们看看在崩溃恢复过程中,可能会出现的两个数据不⼀致性的隐患及针对这些情况ZAB协议所需要保证的特性。
1. ZAB协议需要确保那些已经在Leader服务器上提交的事务最终被所有服务器都提交
假设⼀个事务在 Leader 服务器上被提交了,并且已经得到过半 Folower 服务器的Ack反馈,但是在它将Commit消息发送给所有Follower机器之前, Leader服务器挂了,如图所示:
图中的消息C2就是⼀个典型的例⼦:在集群正常运⾏过程中的某⼀个时刻, Server1 是 Leader 服务器,其先后⼴播了消息 P1、 P2、 C1、 P3 和 C2,其中,当Leader服务器将消息C2(C2是Commit Of Proposal2的缩写,即提交事务Proposal2)发出后就⽴即崩溃退出了。针对这种情况, ZAB协议就需要确保事务Proposal2最终能够在所有的服务器上都被提交成功,否则将出现不⼀致。
2. ZAB协议需要确保丢弃那些只在Leader服务器上被提出的事务
如果在崩溃恢复过程中出现⼀个需要被丢弃的提案,那么在崩溃恢复结束后需要跳过该事务Proposal,如图所示:
在图所示的集群中,假设初始的 Leader 服务器 Server1 在提出了⼀个事务Proposal3 之后就崩溃退出了,从⽽导致集群中的其他服务器都没有收到这个事务Proposal3。于是,当 Server1 恢复过来再次加⼊到集群中的时候, ZAB 协议需要确保丢弃Proposal3这个事务。结合上⾯提到的这两个崩溃恢复过程中需要处理的特殊情况,就决定了 ZAB 协议必须设计这样⼀个Leader 选举算法:能够确保提交已经被 Leader 提交的事务 Proposal,同时丢弃已经被跳过的事务Proposal。针对这个要求,如果让Leader选举算法能够保证新选举出来的Leader服务器拥有集群中所有机器最⾼编号(即ZXID最⼤)的事务Proposal,那么就可以保证这个新选举出来的Leader⼀定具有所有已经提交的提案。更为重要的是,如果让具有最⾼编号事务Proposal 的机器来成为 Leader,就可以省去 Leader 服务器检查Proposal的提交和丢弃⼯作的这⼀步操作了。
3.4 数据同步
完成Leader选举之后,在正式开始⼯作(即接收客户端的事务请求,然后提出新的提案)之前,Leader服务器会⾸先确认事务⽇志中的所有Proposal是否都已经被集群中过半的机器提交了,即是否完成数据同步。下⾯我们就来看看ZAB协议的数据同步过程。所有正常运⾏的服务器,要么成为 Leader,要么成为 Follower 并和 Leader 保持同步。 Leader服务器需要确保所有的Follower服务器能够接收到每⼀条事务Proposal,并且能够正确地将所有已经提交了的事务Proposal应⽤到内存数据库中去。具体的, Leader服务器会为每⼀个Follower服务器都准备⼀个队列,并将那些没有被各Follower服务器同步的事务以Proposal消息的形式逐个发送给Follower服务器,并在每⼀个Proposal消息后⾯紧接着再发送⼀个Commit消息,以表示该事务已经被提交。等到Follower服务器将所有其尚未同步的事务 Proposal 都从 Leader 服务器上同步过来并成功应⽤到本地数据库中后, Leader服务器就会将该Follower服务器加⼊到真正的可⽤Follower列表中,并开始之后的其他流程。
3.5 运行时状态分析
在ZAB协议的设计中,每个进程都有可能处于如下三种状态之⼀
· LOOKING: Leader选举阶段。
· FOLLOWING: Follower服务器和Leader服务器保持同步状态。
· LEADING: Leader服务器作为主进程领导状态。
所有进程初始状态都是LOOKING状态,此时不存在Leader,接下来,进程会试图选举出⼀个新的Leader,之后,如果进程发现已经选举出新的Leader了,那么它就会切换到FOLLOWING状态,并开始和Leader保持同步,处于FOLLOWING状态的进程称为Follower, LEADING状态的进程称为Leader,当Leader崩溃或放弃领导地位时,其余的Follower进程就会转换到LOOKING状态开始新⼀轮的Leader选举。
⼀个Follower只能和⼀个Leader保持同步, Leader进程和所有的Follower进程之间都通过⼼跳检测机制来感知彼此的情况。若Leader能够在超时时间内正常收到⼼跳检测,那么Follower就会⼀直与该Leader保持连接,⽽如果在指定时间内Leader⽆法从过半的Follower进程那⾥接收到⼼跳检测,或者TCP连接断开,那么Leader会放弃当前周期的领导,并转换到LOOKING状态,其他的Follower也会选择放弃这个Leader,同时转换到LOOKING状态,之后会进⾏新⼀轮的Leader选举。
4.ZAB与Paxos的联系和区别
联系:
① 都存在⼀个类似于Leader进程的⻆⾊,由其负责协调多个Follower进程的运⾏。
② Leader进程都会等待超过半数的Follower做出正确的反馈后,才会将⼀个提议进⾏提交。
③ 在ZAB协议中,每个Proposal中都包含了⼀个epoch值,⽤来代表当前的Leader周期,在Paxos算法中,同样存在这样的⼀个标识,名字为Ballot。
区别:
Paxos算法中,新选举产⽣的主进程会进⾏两个阶段的⼯作,第⼀阶段称为读阶段,新的主进程和其他进程通信来收集主进程提出的提议,并将它们提交。第⼆阶段称为写阶段,当前主进程开始提出⾃⼰的提议。
ZAB协议在Paxos基础上添加了同步阶段,此时,新的Leader会确保 存在过半的Follower已经提交了之前的Leader周期中的所有事务Proposal。这⼀同步阶段的引⼊,能够有效地保证Leader在新的周期中提出事务Proposal之前,所有的进程都已经完成了对之前所有事务Proposal的提交。
总的来说, ZAB协议和Paxos算法的本质区别在于,两者的设计⽬标不太⼀样, ZAB协议主要⽤于构建⼀个⾼可⽤的分布式数据主备系统,⽽Paxos算法则⽤于构建⼀个分布式的⼀致性状态机系统。
版权归原作者 蹦跶的蜗牛 所有, 如有侵权,请联系我们删除。