学习目标:了解C/C++内存的分段情况,C++内容管理方式、operator new与operator delete函数 、new和delete的实现原理、定位new的表达式、最后介绍相关面试题的解析
文章目录
一、C/C++内存分段
C/C++程序会对内存进行分段。
从C语言的角度我们知道:分为栈、堆和静态区:
从操作系统的角度我们分为:
对于不同的区域数据有不同的性质,方便管理。
- 栈又叫堆栈,非静态局部变量/函数参数/返回值等等,栈是向下增长的>。
- 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。
- 堆用于程序运行时动态内存分配,堆是可以上增长的。
- 数据段–存储全局数据和静态数据。
- 代码段–可执行的代码/只读常量。
我们先来看下面的一段代码和相关问题,直接进行灵魂拷问:
int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
static int staticVar = 1;
int localVar = 1;
int num1[10] = {1, 2, 3, 4};
char char2[] = "abcd";
const char* pChar3 = "abcd";
int* ptr1 = (int*)malloc(sizeof (int)*4);
int* ptr2 = (int*)calloc(4, sizeof(int));
int* ptr3 = (int*)realloc(ptr2, sizeof(int)*4);
free (ptr1);
free (ptr3);
}
globalVar在哪里?全局变量,在数据段(静态区)
staticGlobalVar在哪里?静态变量,在数据段(静态区)
staticVar在哪里?数据段(静态区)
localVar在哪里?局部变量,在栈
num1 在哪里?栈
—————————————————————————————————
char2在哪里?栈
char2在哪里?"abcd"常量在代码段中,char2在栈中开辟一个数组,在把常量拷贝到数组中去,char就是a,a在栈中
pChar3在哪里?pChar3是局部变量,是常变量,还是在栈中
pChar3在哪里?pChar3是一个指针(也就是"abcd"的地址),故pChar3在代码段(常量区)中
ptr1在哪里?ptr1是一个局部变量的指针,指向在堆上动态开辟的空间,所以ptr1在是在栈上的
ptr1在哪里?ptr1在堆上,在堆
sizeof(num1) = 40;
sizeof(char2) = 5;
strlen(char2) = 4;
sizeof(pChar3) = 4/8;
strlen(pChar3) = 4;
sizeof(ptr1) = 4/8;
至此,结束我们的这一道题。
二、C语言中动态内存管理方式
malloc/calloc/realloc和free
void Test ()
{
int* p1 = (int*) malloc(sizeof(int));
free(p1);
// 1.malloc/calloc/realloc的区别是什么?
int* p2 = (int*)calloc(4, sizeof (int));
int* p3 = (int*)realloc(p2, sizeof(int)*10);
// 这里需要free(p2)吗?
free(p3);
}
对于区别,直接看我之前的博客
对于另一个问题,我们知道realloc扩完容之后,原地扩容则p2和p3是一样,如果是异地扩容realloc会把p2释放掉
三、C++内存管理方式
C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。
1.new/delete操作内置类型
int main()
{
//内置类型
//相比于malloc/free,除了用法没有其他区别
//动态申请一个int类型的空间
int* p1 = new int;
delete p1;
//动态申请一个int类型的空间并初始化为0
int* p2 = new int(0);
delete p2;
//动态申请10个int类型的空间
int* p3 = new int[10];
delete[] p3;
//动态申请10个int类型的空间,并初始化
int* p4 = new int[10]{ 1,2,3,4 };
delete[] p4;
return 0;
}
注:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[]
同时,malloc失败会返回一个空指针
而new失败会抛出异常:
void Test()
{
while (1)
{
//new失败,抛出异常——不需要检查返回值
char* p1 = new char[1024 * 1024 * 1024];
cout << (void*)p1 << endl;
}
}
int main()
{
try
{
Test();
}
catch (exception& e)
{
cout << e.what() << endl;
}
return 0;
}
真正的区别在于操作自定义类型👇
2 new和delete操作自定义类型
class A
{
public:
A(int a = 0)
:_a(a)
{
cout << "A():" << this << endl;
}
~A()
{
cout << "~A():" << this << endl;
}
private:
int _a;
};
int main()
{
//自定义类型
//new和delete相比malloc,除了空间管理,还会调用构造函数析构函数
A* p1 = new A;
delete p1;
cout << "-----------------" << endl;
A* p2 = (A*)malloc(sizeof(A));
free(p2);
return 0;
}
注:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与free不会
new调用构造函数和delete调用析构函数,这很大程度方便了我们,比如构造一个链表:
struct ListNode
{
ListNode* _next;
int _val;
ListNode(int val)
:_next(nullptr)
,_val(val)
{
}
};
int main()
{
ListNode* n1 = new ListNode(1);
ListNode* n2 = new ListNode(2);
ListNode* n3 = new ListNode(3);
ListNode* n4 = new ListNode(4);
n1->_next = n2;
return 0;
}
对于new和delete一定要匹配使用(单个和多个),否则可能会出现各种情况,编译器不同,出现的情况也可能不同。
四、operator new与operator delete函数
new的底层机制:
1.operator new——>malloc
2.调用构造函数
new和delete是用户进行动态内存申请和释放的操作符,operator new和operator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间
operator new是库里面实现的全局函数,不是运算符重载(参数没有自定义类型)
/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间失败,
尝试执行空间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。
*/
void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
// try to allocate size bytes
void *p;
while ((p = malloc(size)) == 0)
if (_callnewh(size) == 0)
{
// report no memory
// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
static const std::bad_alloc nomem;
_RAISE(nomem);
}
return (p);
}
简单来说,就是封装malloc(符合C++面向对象处理错误的方式),申请内存失败,抛出异常,这里了解一下。
也就是说,new申请内存,会被转换成1.调用operator new,2.调用构造函数
#include <iostream>
using namespace std;
struct ListNode
{
ListNode* _next;
int _val;
ListNode(int val = 0)
:_next(nullptr)
, _val(val)
{}
};
int main()
{
ListNode* p = new ListNode;
return 0;
}
进行调试进入反汇编:
operator delete函数:
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void *pUserData)
{
_CrtMemBlockHeader * pHead;
RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
if (pUserData == NULL)
return;
_mlock(_HEAP_LOCK); /* block other threads */
__TRY
/* get a pointer to memory block header */
pHead = pHdr(pUserData);
/* verify block type */
_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
_free_dbg( pUserData, pHead->nBlockUse );
__FINALLY
_munlock(_HEAP_LOCK); /* release other threads */
__END_TRY_FINALLY
return;
}
/*
free的实现
*/
#define free(p) _free_dbg(p, _NORMAL_BLOCK)
通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的
那如果我们手动去调用operator new呢❓
operator new和malloc的区别就是封装了一下,失败抛出异常,但是我们并不会去使用operator new,我们明白底层即可。直接用new即可。
五、new和delete的实现原理
1.内置类型
如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。
2.自定义类型
- new的原理
1.调用operator new函数申请空间
2.在申请的空间上执行构造函数,完成对象的构造
- delete的原理
1.在空间上执行析构函数,完成对象中资源的清理工作
2.调用operator delete函数释放对象的空间
- new T[N]的原理
1.调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
2.在申请的空间上执行N次构造函数
- delete[]的原理
1.在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
2.调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间
六、定位new表达式(placement-new)
定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用格式:
new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表使用场景:
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化
int main()
{
//A* p1 = new A;
A* p2 = (A*)malloc(sizeof(A));
if (p2 == nullptr)
{
perror("malloc fail");
exit(-1);
}
//定位new ——对p2指向空间,显示调用构造函数初始化
new(p2)A(1);
p2->~A();//析构函数可以显示调用
free(p2);
return 0;
}
与new不同的是:new失败会抛出异常,如果不想抛出异常,那就可以用malloc+定位new替代new,不过比较麻烦。
会在池化技术(提高效率)中使用,在这里简单了解一下哈。
七、常见面试题
1 malloc/free和new/delete的区别
可以从两个方面着手:1.用法功能 2.底层
1.malloc和free是函数,而new和delete是操作符
2.对于自定义类型,malloc申请的空间不会初始化,而new可以初始化
3.malloc申请的空间,需要计算空间的大小并传递,而new只需后面跟上空间的类型即可
4.malloc的返回值是void*,使用时必须强转,new不需要,因为new后面跟的是空间的类型
5.malloc申请空失败会返回NULL,使用时必须判断是否为空,new不需要,new需要捕获异常
6.申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数和析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中的资源的清理。
2 内存泄漏
2.1什么是内存泄漏
内存泄漏实际上指针丢失了,而内存是不会丢的,我们没有指针找不到了。
内存泄漏是指因为疏忽或者错误造成程序未能释放已经不在使用的内存的情况,并不是指内存在物理上的丢失,而是应用程序分配某段内存后,因为设计错误,失去对该段内存的控制,因此造成了内存泄漏
内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统,后台服务等等,出现内存泄漏会导致响应越来越慢,导致卡死。
void MemoryLeaks()
{
// 1.内存申请了忘记释放
int* p1 = (int*)malloc(sizeof(int));
int* p2 = new int;
// 2.异常安全问题
int* p3 = new int[10];
Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.
delete[] p3;
}
2.2内存泄漏分类(了解)
C/C++程序中一般我们关心两种方面的内存泄漏
- 堆内存泄漏(Heap leak)
堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak
- 系统资源泄漏
指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。
2.3 如何检测内存泄漏(了解)
在VS下,可以使用windows操作系统提供的_CrtDumpMemoryLeaks()函数进行简单检测,该函数只报出了大概泄漏了多少个字节,没有其他更准确的位置信息。
int main() { int* p = new int[10]; // 将该函数放在main函数之后,每次程序退出的时候就会检测是否存在内存泄漏 _CrtDumpMemoryLeaks(); return 0; } // 程序退出后,在输出窗口中可以检测到泄漏了多少字节,但是没有具体的位置 Detected memory leaks! Dumping objects -> {79} normal block at 0x00EC5FB8, 40 bytes long. Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD Object dump complete.
因此写代码时一定要小心,尤其是动态内存操作时,一定要记得释放。但有些情况下总是防不胜防,简单的可以采用上述方式快速定位。如果工程比较大, 内存泄漏位置比较多,不太好查时一般都是借助第三方内存泄漏工具处理的。这里推荐了一些链接可以查看:
- 在linux下内存泄漏检测:linux下几款内存泄漏检测工具
- 在windows下使用第三方工具:VLD工具说明
- 其他工具:内存泄漏工具比较
2.4如何避免内存泄漏
- 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状 态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保 证。
- 采用RAII思想或者智能指针来管理资源。
- 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
- 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵
内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2、事后查错型。如泄漏检测工具。
版权归原作者 平凡的人1 所有, 如有侵权,请联系我们删除。