文章目录
提示:以下是本篇文章正文内容,Java系列学习将会持续更新
一、UDP协议
UDP全称为用户数据报协议。UDP 为应用程序提供了一种无需建立连接就可以发送封装的 IP 数据包的方法。
1-1 UDP协议报文格式:
1-2 UDP协议的特点:
- 无连接:只知道对端的IP和端口号就可以发送,不需要实现建立连接。(就像寄信)。
- 不可靠:没有确认机制, 没有重传机制。如果因为网络故障该段无法发到对方, UDP协议层也不会给应用层返回任何错误信息。
- 面向数据报: 应用层交给UDP多长的报文, UDP原样发送既不会拆分,也不会合并。所以UDP不能够灵活的控制读写数据的次数和数量。
- UDP存在接收缓冲区,但不存在发送缓冲区。UDP没有发送缓冲区,在调用send to时会直接将数据交给内核,由内核将数据传给网络层协议进行后续的传输动作。UDP具有接收缓冲区,但是这个接收缓冲区不能保证收到的UDP报文的顺序和发送UDP报的顺序一致,如果缓冲区满了再到达的UDP数据报就会被丢弃。
为什么UDP不需要发送缓冲区? 因为UDP不保证可靠性,它没有重传机制,当报文丢失时,UDP不需要重新发送,而TCP不同,他必须具备发送缓冲区,当报文丢失时,TCP必须保证重新发送,用户不会管,所以必须要具备发送缓冲区。
- 大小受限。UDP协议首部中有一个16位的最大长度。也就是说一个UDP能传输的数据最大长度是64K(包含UDP首部)。
1-3 扩展问题
- UDP本身是无连接,不可靠,面向数据报的协议,如果要基于传输层UDP协议,来实现一个可靠传输,应该如何设计?
- UDP大小是受限的,如果要基于传输层UDP协议,传输超过64K的数据,应该如何设计?
二、TCP协议
TCP全称传输控制协议,必须对数据的传输进行控制。
2-1 TCP协议报文格式:
- 源端口号/目的端口号:表示数据从哪个进程来,要到那个进程去
- 32位序号:序号是
可靠传输
的关键因素。TCP将要传输的每个字节都进行了编号,序号是本报文段发送的数据组的第一个字节的编号,序号可以保证传输信息的有效性。比如:一个报文段的序号为300,此报文段数据部分共有100字节,则下一个报文段的序号为401。 - 32位确认序号:每一个ACK对应这一个确认号,它指明下一个期待收到的字节序号,表明该序号之前的所有数据已经正确无误的收到。确认号只有当ACK标志为1时才有效。比如建立连接时,SYN报文的ACK标志位为0。
- **4位首部长度(数据偏移)**: 表示该TCP头部有多少个32位bit(有多少个4字节),所以TCP头部大长度是15 * 4 = 60。根据该部分可以将TCP报头和有效载荷分离。TCP报文默认大小为20个字节。
- 6位标志位:
URG
: 它为了标志紧急指针是否有效。ACK
:标识确认号是否有效。PSH
: 提示接收端应用程序立即将接收缓冲区的数据拿走。RST
:它是为了处理异常连接的, 告诉连接不一致的一方,我们的连接还没有建立好, 要求对方重新建立连接。我们把携带RST标识的称为复位报文段。SYN
: 请求建立连接; 我们把携带SYN标识的称为同步报文段。FIN
: 通知对方, 本端要关闭连接了, 我们称携带FIN标识的为结束报文段。 - 16位的紧急指针:按序到达是TCP协议保证可靠性的一种机制,但是也存在一些报文想优先被处理,这时就可以设置紧急指针,指向该报文即可,同时将紧急指针有效位置位1。
- 16位窗口大小:如果发送方发送大量数据,接收方接收不过来,会导致大量数据丢失。然后接收方可以发送给发送发消息让发送方发慢一点,这是流量控制。接收方将自己接收缓冲器剩余空间的大小告诉发送方叫做16位窗口大小。发送发可以根据窗口大小来适配发送的速度和大小,窗口大小最大是2的16次方,及64KB,但也可以根据选项中的某些位置扩展,最大扩展1G。
- 16位校验和:发送端填充,CRC校验。如果接收端校验不通过, 则认为数据有问题(此处的检验和不光包含TCP首部也包含TCP数据部分)。
2-2 什么是可靠性?
- TCP会尽自己最大的努力,将数据发送给对方
- 如果真的遇到发送不过去的情况,TCP至少会告诉发送进程,数据发送失败了
- 保证不会收到错误的数据(通过checksum)
- TCP能保证收到的数据一定是有序的(按照发送进程发送时的顺序)
- TCP会根据对方的接收能力和网络线路的承载能力,进行流量的控制
TCP做了哪些机制保证了可靠性?
- 确认应答机制
- 超时重传机制
- 连接管理机制
2-2-1 确认应答机制
接收方(对方的TCP)有责任对收到的数据进行确认(acknowledge) 应答。
TCP将每个字节的数据进行编号,即序列号。每一个ACK都带有对应的确认序列号,意思是告诉发送者,我已经收到了哪些数据;下一次你从哪里开始发。
2-2-2 超时重传机制
主机A发送数据给B之后,可能因为网络拥堵等原因,数据无法到达主机B;
如果主机A在一个特定时间间隔内没有收到B发来的确认应答,就会进行重发;
因此主机B会收到很多重复数据。那么TCP协议需要能够识别出那些包是重复的包,并且把重复的丢弃掉。
这时候我们可以利用前面提到的序列号,就可以很容易做到去重的效果。
TCP为了保证无论在任何环境下都能比较高性能的通信,因此会动态计算这个最大超时时间。
- Linux中(BSD Unix和Windows也是如此),超时以500ms为一个单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍。
- 如果重发一次之后,仍然得不到应答,等待 2500ms 后再进行重传。如果仍然得不到应答,等待 4500ms 进行重传。依次类推,超时时间以指数形式递增。
- 累计到一定的重传次数,TCP认为网络或者对端主机出现异常,强制关闭连接。不会一直重传。
序列号去重。
超时时间递增。
不会一直重传。
2-2-3 连接管理机制
在正常情况下, TCP要经过三次握手
建立连接
、
四次挥手
断开连接,主要介绍TCP是如何建立和断开连接的。
2-2-3-1 三次握手
从标志位角度
SYN就是TCP中建立连接时的标识,ACK是确认标识。
首先主机A和主机B之间需要连接而客户端先发送一次SYN,服务器就会返回一个ACK,表示客户端要和服务器建立连接,然后服务器再给客户端发送一个SYN,客户端在返回一个ACK,表示服务器要和客户端建立连接,完成四次交互,就可以确保建立连接成功了,这是一个"双向奔赴"的过程,
而明明是四次交互,为什么被称为三次握手呢,就是由于中间这两次(SYN和ACK)是一定会合二为一的,只需要把ACK和SYN同时置为1就可以了,因此被称为三次握手。
为啥握手是三次?两次行不行?四次行不行?
四次可以,但是效率低,没有必要。每次传输的数据都需要进行一系列的封装和分用, 因此传输两次肯定要比传输一次慢很多。
两次是绝对不行的,两次只能确定双方中一方的发送和接收能力正常,另一方就不清楚了,这是不满足可靠性。
2-2-3-2 四次挥手
FIN是通知对方, 本端要关闭连接的结束报文段标识。这里四次挥手就是双方各自给对方发送FIN,并在收到对方的FIN请求后回复一个ACK。
三次握手的发起方一定是客户端,而四次挥手的发起方有可能是客户端,也有可能是服务器,而且三次握手中间两次是可以合并的,而四次挥手的中间两次是不一定能合并的,这里能否合并取决于B发送ACK和发送FIN的时机是否相同,相同的话是可以合并的,不相同的话是不能合并的,
而三次握手中服务器所发送的SYN和ACK都是由操作系统内核负责执行,收到客户端的SYN请求之后,会把ACK和SYN同一时间发送过去,这是同一时机发生的因此是可以合并的,
而四次挥手B给A发送的ACK是有操作系统内核负责的,而FIN请求只有当B中的代码执行到了socket.close()方法才会出发FIN,如果这两操作中间间隔的时间比较短是可以合并的,间隔时间长就不能合并了,这是无法确定的,因此一般情况下都是四次交互过程,也就是四次挥手!
总结:
提示:这里对文章进行总结:
以上就是今天的学习内容,本文是计算机网络的学习,详细讲解了TCP和UDP的工作原理、各自的特点,以及三次握手和四次挥手。之后的学习内容将持续更新!!!
版权归原作者 一只咸鱼。。 所有, 如有侵权,请联系我们删除。