0


实战Flink Java api消费kafka实时数据落盘HDFS

文章目录

1 需求分析

在Java api中,使用flink本地模式,消费kafka主题,并直接将数据存入hdfs中。

flink版本1.13

kafka版本0.8

hadoop版本3.1.4

2 实验过程

2.1 启动服务程序

为了完成 Flink 从 Kafka 消费数据并实时写入 HDFS 的需求,通常需要启动以下组件:

[root@hadoop10 ~]# jps
3073 SecondaryNameNode
2851 DataNode
2708 NameNode
12854 Jps
1975 StandaloneSessionClusterEntrypoint
2391 QuorumPeerMain
2265 TaskManagerRunner
9882 ConsoleProducer
9035 Kafka
3517 NodeManager
3375 ResourceManager

确保 Zookeeper 在运行,因为 Flink 的 Kafka Consumer 需要依赖 Zookeeper。

确保 Kafka Server 在运行,因为 Flink 的 Kafka Consumer 需要连接到 Kafka Broker。

启动 Flink 的 JobManager 和 TaskManager,这是执行 Flink 任务的核心组件。

确保这些组件都在运行,以便 Flink 作业能够正常消费 Kafka 中的数据并将其写入 HDFS。

  • 具体的启动命令在此不再赘述。

2.2 启动kafka生产

  • 当前kafka没有在守护进程后台运行;
  • 创建主题,启动该主题的生产者,在kafka的bin目录下执行;
  • 此时可以生产数据,从该窗口键入任意数据进行发送。
kafka-topics.sh --zookeeper hadoop10:2181 --create --topic topic1 --partitions 1 --replication-factor 1

kafka-console-producer.sh --broker-list hadoop10:9092 --topic topic1

在这里插入图片描述

3 Java API 开发

3.1 依赖

此为项目的所有依赖,包括flink、spark、hbase、ck等,实际本需求无需全部依赖,均可在阿里云或者maven开源镜像站下载。

<?xml version="1.0" encoding="UTF-8"?><projectxmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>org.example</groupId><artifactId>flink-test</artifactId><version>1.0-SNAPSHOT</version><properties><flink.version>1.13.6</flink.version><hbase.version>2.4.0</hbase.version></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.11</artifactId><version>${flink.version}</version><!-- <scope>provided</scope>--></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-blink_2.11</artifactId><version>${flink.version}</version></dependency><!--<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_2.11</artifactId>
            <version>1.14.6</version>
        </dependency>--><dependency><groupId>org.apache.flink</groupId><artifactId>flink-shaded-hadoop-2-uber</artifactId><version>2.7.5-10.0</version></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.17</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.24</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.38</version></dependency><dependency><groupId>org.apache.bahir</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.1.0</version></dependency><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-server</artifactId><version>${hbase.version}</version><exclusions><exclusion><artifactId>guava</artifactId><groupId>com.google.guava</groupId></exclusion><exclusion><artifactId>log4j</artifactId><groupId>log4j</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-common</artifactId><version>${hbase.version}</version><exclusions><exclusion><artifactId>guava</artifactId><groupId>com.google.guava</groupId></exclusion></exclusions></dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId><version>2.4.2</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.32</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-csv</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-json</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-hbase-2.2_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-cep_2.11</artifactId><version>${flink.version}</version></dependency><dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.20</version></dependency></dependencies><build><extensions><extension><groupId>org.apache.maven.wagon</groupId><artifactId>wagon-ssh</artifactId><version>2.8</version></extension></extensions><plugins><plugin><groupId>org.codehaus.mojo</groupId><artifactId>wagon-maven-plugin</artifactId><version>1.0</version><configuration><!--上传的本地jar的位置--><fromFile>target/${project.build.finalName}.jar</fromFile><!--远程拷贝的地址--><url>scp://root:root@hadoop10:/opt/app</url></configuration></plugin></plugins></build></project>
  • 依赖参考在这里插入图片描述

3.2 代码部分

  • 请注意kafka和hdfs的部分需要配置服务器地址,域名映射。
  • 此代码的功能是消费topic1主题,将数据直接写入hdfs中。
importorg.apache.flink.api.common.serialization.SimpleStringEncoder;importorg.apache.flink.api.common.serialization.SimpleStringSchema;importorg.apache.flink.core.fs.Path;importorg.apache.flink.streaming.api.datastream.DataStream;importorg.apache.flink.streaming.api.environment.StreamExecutionEnvironment;importorg.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;importorg.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;importjava.util.Properties;publicclassTest9_kafka{publicstaticvoidmain(String[] args)throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();Properties properties =newProperties();
        properties.setProperty("bootstrap.servers","hadoop10:9092");
        properties.setProperty("group.id","test");// 使用FlinkKafkaConsumer作为数据源DataStream<String> ds1 = env.addSource(newFlinkKafkaConsumer<>("topic1",newSimpleStringSchema(), properties));String outputPath ="hdfs://hadoop10:8020/out240102";// 使用StreamingFileSink将数据写入HDFSStreamingFileSink<String> sink =StreamingFileSink.forRowFormat(newPath(outputPath),newSimpleStringEncoder<String>("UTF-8")).build();// 添加Sink,将Kafka数据直接写入HDFS
        ds1.addSink(sink);
        ds1.print();
        env.execute("Flink Kafka HDFS");}}

4 实验验证

STEP1

运行idea代码,程序开始执行,控制台除了日志外为空。下图是已经接收到生产者的数据后,消费在控制台的截图。

在这里插入图片描述

STEP2

启动生产者,将数据写入,数据无格式限制,随意填写。此时发送的数据,是可以在STEP1中的控制台中看到屏幕打印结果的。
在这里插入图片描述

STEP3

在HDFS中查看对应的目录,可以看到数据已经写入完成。
我这里生成了多个inprogress文件,是因为我测试了多次,断码运行了多次。ide打印在屏幕后,到hdfs落盘写入,中间有一定时间,需要等待,在HDFS中刷新数据,可以看到文件大小从0到被写入数据的过程。
在这里插入图片描述

5 时间窗口

  • 使用另一种思路实现,以时间窗口的形式,将数据实时写入HDFS,实验方法同上。截图为发送数据消费,并且在HDFS中查看到数据。在这里插入图片描述

在这里插入图片描述

packageday2;importday2.CustomProcessFunction;importorg.apache.flink.api.common.serialization.SimpleStringEncoder;importorg.apache.flink.api.common.serialization.SimpleStringSchema;importorg.apache.flink.core.fs.Path;importorg.apache.flink.streaming.api.datastream.DataStream;importorg.apache.flink.streaming.api.environment.StreamExecutionEnvironment;importorg.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink;importorg.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;importjava.util.Properties;publicclassTest9_kafka{publicstaticvoidmain(String[] args)throwsException{StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();Properties properties =newProperties();
        properties.setProperty("bootstrap.servers","hadoop10:9092");
        properties.setProperty("group.id","test");// 使用FlinkKafkaConsumer作为数据源DataStream<String> ds1 = env.addSource(newFlinkKafkaConsumer<>("topic1",newSimpleStringSchema(), properties));String outputPath ="hdfs://hadoop10:8020/out240102";// 使用StreamingFileSink将数据写入HDFSStreamingFileSink<String> sink =StreamingFileSink.forRowFormat(newPath(outputPath),newSimpleStringEncoder<String>("UTF-8")).build();// 在一个时间窗口内将数据写入HDFS
        ds1.process(newCustomProcessFunction())// 使用自定义 ProcessFunction.addSink(sink);// 执行程序
        env.execute("Flink Kafka HDFS");}}
packageday2;importorg.apache.flink.streaming.api.functions.ProcessFunction;importorg.apache.flink.util.Collector;publicclassCustomProcessFunctionextendsProcessFunction<String,String>{@OverridepublicvoidprocessElement(String value,Context ctx,Collector<String> out)throwsException{// 在这里可以添加具体的逻辑,例如将数据写入HDFSSystem.out.println(value);// 打印结果到屏幕
        out.collect(value);}}
标签: flink java kafka

本文转载自: https://blog.csdn.net/qq_31412425/article/details/135445839
版权归原作者 大数据程序终结者 所有, 如有侵权,请联系我们删除。

“实战Flink Java api消费kafka实时数据落盘HDFS”的评论:

还没有评论