0


JAVA面试题分享一百六十三:Kafka如何实现延时推送?

一、延时队列定义

延时队列:是一种消息队列,可以用于在指定时间或经过一定时间后执行某种操作。

二、技术实现方案

1. Redis

1.1 优点:
①Redis的延迟队列是基于Redis的sorted set实现的,性能较高。
②Redis的延迟队列可以通过TTL设置过期时间,灵活性较高。
③简单易用,适用于小型系统。
④性能较高,支持高并发。

1.2 缺点:
①可靠性相对较低,可能会丢失消息,就算redis最高级别的持久化也是有可能丢一条的,每次请求都做aof,但是aof是异步的,所以不保证这一条操作能被持久化。
②而且Redis持久化的特性也导致其在数据量较大时,存储和查询效率逐渐降低,此时会需要对其进行分片和负载均衡。
③Redis的延迟队列需要手动实现消息重试机制,更严谨的消息队列需要数据库兜底。

1.3 应用场景:
①适用于较小规模的系统,实时性要求较高的场景。
②适用于轻量级的任务调度和消息通知场景,适合短期延迟任务,不适合长期任务,例如订单超时未支付等。

2. Kafka

2.1 优点:
①Kafka的优点在于其高并发、高吞吐量和可扩展性强,同时支持分片。
②可靠性高,支持分布式和消息持久化。
③消费者可以随时回溯消费。
④支持多个消费者并行消费、消费者组等机制。

2.2 缺点:
①没有原生的延迟队列功能,需要使用topic和消费者组来实现,实现延迟队列需要额外的开发工作。
②消费者需要主动拉取数据,可能会导致延迟,精度不是特别高。
在此案例中代码已经实现了,直接拿来使用就可以了。

2.3 应用场景:
适用于大规模的数据处理,实时性要求较高的,高吞吐量的消息处理场景。

3. RabbitMQ

3.1 优点:
①RabbitMQ的延迟队列是通过RabbitMQ的插件实现的,易于部署和使用。
②RabbitMQ的延迟队列支持消息重试和消息顺序处理,可靠性较高。
③支持消息持久化和分布式。
④支持优先级队列和死信队列。
⑤提供了丰富的插件和工具。

3.2 缺点:
①RabbitMQ的延迟队列性能较低,不适用于高吞吐量的场景。
②性能较低,不适合高并发场景。
③实现延迟队列需要额外的配置,但是配置就很简单了。

3.3应用场景:
适用于中小型的任务调度和消息通知,对可靠性要求高的场景。

4. RocketMQ

4.1 优点:
①RocketMQ的延迟队列是RocketMQ原生支持的,易于使用和部署。
②RocketMQ的延迟队列支持消息重试和消息顺序处理,可靠性较高。
③高性能和高吞吐量,支持分布式和消息持久化。
④RocketMQ使用简单,性能好,并且支持延迟队列功能。

4.2 缺点:
①RocketMQ的延迟队列不支持动态添加或删除队列。
②RocketMQ的延迟队列需要保证消息的顺序,可能会导致消息延迟。
③在节点崩溃后,RocketMQ有可能发生消息丢失。

4.3 应用场景:
①适用于大规模的数据处理,对性能和吞吐量要求较高的场景。
②适合于任务量较大、需要延迟消息和定时消息的场景。例如电商平台、社交软件等。
③适用于分布式任务调度和高可靠性消息通知场景。

三、Kafka延时队列背景

  1. 基于以上四种实现延时队列的分析来,选择对应的技术方案的基础上呢,不同公司的mq的基础设施不同,如果只有Kafka,也没必要引入RabbitMQ和RocketMq来实现,引入新的组件也会顺便带来新的问题。
  2. 网上搜Kafka实现延时队列有很多文章,很多文章说使用Kafka内部的时间轮,支持延时操作,但这是Kafka自己内部使用的,时间轮只是一个工具类,用户无法将其作为延迟队列来使用。
  3. Kafka延时队列的最佳实践,使用Kafka消费者的暂停和恢复机制来实现

四、Kafka延时队列实现思路

  1. 解决一个问题前首先要明确问题,如何让Kafka有延时队列的功能呢?
  2. 就是在Kafka消费者消费的时候延时消费,不久搞定了嘛
  3. 那如何延时消费呢,网上有些文章使用Thread.sleep进行延时消费这是不靠谱的(亲身实践),sleep的时间超过了Kafka配置的max.poll.records时间,消费者无法及时提交offset,kafka就会认为这个消费者已经挂了,会进行rebalance也就是重新分配分区给消费者,以保证每个分区只被一个消费者消费
  4. 也有同学说了,为了不发生rebalance,那可以增加max.poll.records时间啊,但是这样的话,如果要sleep几天的时间,难道max.poll.records要写几天的时间嘛,有违Kafka的设计原理了,那怎么办呢?
  5. 这时候Kafka的pause暂停消费和resume恢复消费就登场了,pause暂停某个分区之后消费者不会再poll拉取该分区的消息,直到resume恢复该分区之后才会重新poll消息。
  6. 我已经做好了Kafka延时队列的封装,以后只需要一行代码就可以实现延时队列了,代码核心使用Kafka消费者的pause函数(暂停)和resume函数(恢复)+线程池+定时任务+事件监听机制+工厂模式

六、Kafka延时队列架构图

七、kafka延时任务代码实现

以下代码只列出了核心实现

1. KafkaDelayQueue:Kafka延迟队列

定义一个Kafka延期队列,包含的内容:KafkaDelayQueue,其中有延迟队列配置,主题,消费组,延迟时间,目标主题,KafkaSyncConsumer,ApplicationContext,poll线程池,delay线程池等等

package com.wdyin.kafka.delay;

import lombok.Getter;
import lombok.Setter;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.common.TopicPartition;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler;

import java.time.Duration;
import java.util.Collections;
import java.util.concurrent.ThreadPoolExecutor;

/**
 * kafka延时队列
 *
 **/
@Slf4j
@Getter
@Setter
class KafkaDelayQueue<K, V> {

    private String topic;
    private String group;
    private Integer delayTime;
    private String targetTopic;
    private KafkaDelayConfig kafkaDelayConfig;
    private KafkaSyncConsumer<K, V> kafkaSyncConsumer;
    private ApplicationContext applicationContext;
    private ThreadPoolTaskScheduler threadPoolPollTaskScheduler;
    private ThreadPoolTaskScheduler threadPoolDelayTaskScheduler;
    ......
}

2. KafkaDelayQueueFactory:Kafka延迟队列工厂

Kafka延期队列的工厂,用于及其管理延迟队列

package com.wdyin.kafka.delay;

import lombok.Data;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.springframework.context.ApplicationContext;
import org.springframework.util.Assert;
import org.springframework.util.StringUtils;

import java.util.Properties;

/**
 * 延时队列工厂
 **/
@Data
public class KafkaDelayQueueFactory {

    private KafkaDelayConfig kafkaDelayConfig;
    private Properties properties;
    private ApplicationContext applicationContext;
    private Integer concurrency;

    public KafkaDelayQueueFactory(Properties properties, KafkaDelayConfig kafkaDelayConfig) {
        Assert.notNull(properties, "properties cannot null");
        Assert.notNull(kafkaDelayConfig.getDelayThreadPool(), "delayThreadPool cannot null");
        Assert.notNull(kafkaDelayConfig.getPollThreadPool(), "pollThreadPool cannot null");
        Assert.notNull(kafkaDelayConfig.getPollInterval(), "pollInterval cannot null");
        Assert.notNull(kafkaDelayConfig.getPollTimeout(), "timeout cannot null");
        this.properties = properties;
        this.kafkaDelayConfig = kafkaDelayConfig;
    }

    public void listener(String topic, String group, Integer delayTime, String targetTopic) {
        if (StringUtils.isEmpty(topic)) {
            throw new RuntimeException("topic cannot empty");
        }
        if (StringUtils.isEmpty(group)) {
            throw new RuntimeException("group cannot empty");
        }
        if (StringUtils.isEmpty(delayTime)) {
            throw new RuntimeException("delayTime cannot empty");
        }
        if (StringUtils.isEmpty(targetTopic)) {
            throw new RuntimeException("targetTopic cannot empty");
        }
        KafkaSyncConsumer<String, String> kafkaSyncConsumer = createKafkaSyncConsumer(group);
        KafkaDelayQueue<String, String> kafkaDelayQueue = createKafkaDelayQueue(topic, group, delayTime, targetTopic, kafkaSyncConsumer);
        kafkaDelayQueue.send();
    }

    private KafkaDelayQueue<String, String> createKafkaDelayQueue(String topic, String group, Integer delayTime, String targetTopic, KafkaSyncConsumer<String, String> kafkaSyncConsumer) {
        KafkaDelayQueue<String, String> kafkaDelayQueue = new KafkaDelayQueue<>(kafkaSyncConsumer, kafkaDelayConfig);
        Assert.notNull(applicationContext, "kafkaDelayQueue need applicationContext");
        kafkaDelayQueue.setApplicationContext(applicationContext);
        kafkaDelayQueue.setDelayTime(delayTime);
        kafkaDelayQueue.setTopic(topic);
        kafkaDelayQueue.setGroup(group);
        kafkaDelayQueue.setTargetTopic(targetTopic);
        return kafkaDelayQueue;
    }

    private KafkaSyncConsumer<String, String> createKafkaSyncConsumer(String group) {
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, group);
        return new KafkaSyncConsumer<>(properties);
    }

}

3. KafkaPollListener:Kafka延迟队列事件监听

package com.wdyin.kafka.delay;

import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.springframework.context.ApplicationListener;
import org.springframework.kafka.core.KafkaTemplate;

import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.util.*;

/**
 * 延时队列监听
 * @Desc :
 */
@Slf4j
public class KafkaPollListener<K, V> implements ApplicationListener<KafkaPollEvent<K, V>> {

    private KafkaTemplate kafkaTemplate;

    public KafkaPollListener(KafkaTemplate kafkaTemplate) {
        this.kafkaTemplate = kafkaTemplate;
    }

    @Override
    public void onApplicationEvent(KafkaPollEvent<K, V> event) {
        ConsumerRecords<K, V> records = (ConsumerRecords<K, V>) event.getSource();
        Integer delayTime = event.getDelayTime();
        KafkaDelayQueue<K, V> kafkaDelayQueue = event.getKafkaDelayQueue();
        KafkaSyncConsumer<K, V> kafkaSyncConsumer = kafkaDelayQueue.getKafkaSyncConsumer();
        Set<TopicPartition> partitions = records.partitions();
        Map<TopicPartition, OffsetAndMetadata> commitMap = new HashMap<>();
        partitions.forEach((partition) -> {
            List<ConsumerRecord<K, V>> consumerRecords = records.records(partition);
            for (ConsumerRecord<K, V> record : consumerRecords) {
                long startTime = (record.timestamp() / 1000) * 1000;
                long endTime = startTime + delayTime;
                long now = System.currentTimeMillis();
                if (endTime > now) {
                    kafkaSyncConsumer.pauseAndSeek(partition, record.offset());
                    kafkaDelayQueue.getThreadPoolPollTaskScheduler().schedule(kafkaDelayQueue.delayTask(partition), new Date(endTime));
                    break;
                }
                log.info("{}: partition:{}, offset:{}, key:{}, value:{}, messageDate:{}, nowDate:{}, messageDate:{}, nowDate:{}",
                        Thread.currentThread().getName() + "#" + Thread.currentThread().getId(), record.topic() + "-" + record.partition(), record.offset(), record.key(), record.value(), LocalDateTime.ofInstant(Instant.ofEpochMilli(startTime), ZoneId.systemDefault()), LocalDateTime.now(), startTime, Instant.now().getEpochSecond());
                kafkaTemplate.send(kafkaDelayQueue.getTargetTopic(), record.value());
                commitMap.put(partition, new OffsetAndMetadata(record.offset() + 1));
            }
        });
        if (!commitMap.isEmpty()) {
            kafkaSyncConsumer.commit(commitMap);
        }
    }
}

4. KafkaDelayConfig:Kafka延时配置

package com.wdyin.kafka.delay;

import lombok.Data;

/**
 * 延时队列配置
 **/
@Data
public class KafkaDelayConfig {

    private Integer pollInterval;
    private Integer pollTimeout;
    private Integer pollThreadPool;
    private Integer delayThreadPool;

    public KafkaDelayConfig() {
    }
    ......
}

八. 如何使用kafka延时队列

import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;
import javax.annotation.Resource;

/**
 **/
@Component
public class KafkaDelayApplication {

    @Resource
    private KafkaDelayQueueFactory kafkaDelayQueueFactory;

    /**
     * 延迟任务都可以配置在这里
     * Kafka将消息从【延时主题】经过【延时时间】后发送到【目标主题】
     */
    @PostConstruct
    public void init() {
        //延迟30秒
        kafkaDelayQueueFactory.listener("delay-30-second-topic", "delay-30-second-group", 1 * 30 * 1000, "delay-60-second-target-topic");
        //延迟60秒
        kafkaDelayQueueFactory.listener("delay-60-second-topic", "delay-60-second-group", 1 * 60 * 1000, "delay-60-second-target-topic");
        //延迟30分钟
        kafkaDelayQueueFactory.listener("delay-30-minute-topic", "delay-30-minute-group", 30 * 60 * 1000, "delay-30-minute-target-topic");
    }
}

九、测试

  1. 先往延时主题【delay-60-second-topic】发送一千条消息,一共10个分区,每个分区100条消息,消息时间是2023-04-21 16:37:26分,延迟消息消费时间就应该是2023-04-21 16:38:26在这里插入图片描述
  2. 延时队列进行消费:通过日志查看,消息日期和延迟队列消费消息时间正好相差一分钟在这里插入图片描述

十、总结

  1. 本案例已成功实现Kafka的延时队列,并进行实测,代码引入可用非常方便。
  2. Kafka实现的延时队列支持秒级别的延时任务,不支持毫秒级别,但是毫秒级别的延时任务也没有意义
  3. 注意一个主题对应的延时时间是一致的,不能在同一个主题里放不同时间的延时任务。
  4. 此方案的缺点就是,如果数据量极大,生产者生产消息速度很快,一定要保证Kafka的消费能力,否则可能会导致延迟,精度不是特别高,不过如果延迟秒级的任务,差个几毫秒肯定可以接受的,一般场景肯定满足。
标签: java kafka 开发语言

本文转载自: https://blog.csdn.net/qq_45038038/article/details/134717999
版权归原作者 之乎者也· 所有, 如有侵权,请联系我们删除。

“JAVA面试题分享一百六十三:Kafka如何实现延时推送?”的评论:

还没有评论