0


Dinky,让 Flink SQL 纵享丝滑

大家好,我是脚丫先生

流批一体,越来越流行了,牛逼一体

之前用java封装flink-sql-client提交脚本文件,很是摩擦。

不过,在研发流批一体平台的时候发现了Dinky,终于丝滑了。

今天就给小伙伴们推荐下低调但实力强大的Dinky!功能强大,解放自己

Dinky

基于 Apache Flink 二次开发,无侵入,开箱即用实时即未来,批流为一体。

用好Dinky,无限丝滑。

官方网站

官方有着详细的使用教程,并且已经开源了。

最重要的是可以加入交流群,随时问作者(比较耐心的一个大佬)。

Dinky平台

搭建Dinky,跟着官方搭建教程一步一操作,比较简单。

作为FlinSQL实时计算平台,其核心功能:

  • 支持 Flink 原生语法、连接器、UDF 等: 几乎零成本将 Flink 作业迁移至 Dinky。
  • 增强 FlinkSQL 语法: 表值聚合函数、全局变量、CDC多源合并、执行环境、语句合并、共享会话等。 支持 Flink 多版本: 支持作为多版本 FlinkSQL Server 的能力以及 OpenApi。
  • 支持外部数据源的 DB SQL 操作: 如 ClickHouse、Doris、Hive、Mysql、Oracle、Phoenix、PostgreSql、SqlServer 等。
  • 支持实时任务运维: 作业上线下线、作业信息、集群信息、作业快照、异常信息、作业日志、数据地图、即席查询、历史版本、报警记录等。

更多的功能,小伙伴们去官网一目了然。

Dinky二次开发感受

源码

下载源码直接导入idea即可,和普通的导入工程没差别。

用java开发的Dinky,非常友好,这么卷的java,现在谁不会。

  • 用Dinky做流批平台时候,以它作为后端,只需要根据需求,重新开发前端即可。

看源码的日子,总是很累的。(看别人的代码脑壳痛)

必须看懂,因为Flink实在很流行

不过最大的感受就是,学会了关于Flink的很多知识,看明白了作者如何封装的。

单纯的看源码总是很累的,只有在实际工作中,需要去改造功能,在去看源码,效率很高,也不枯燥。

自研平台

目前正在进行离线模块的开发,调度有点难顶。

之前打算用熟悉的Airflow,但是发现小海豚挺流行的,自己也想学习学习,就安排上了。

平台中实时流模块,在之后打算集成Dinky源码,让平台的功能更加完善和强大。

祝各位终有所成,收获满满!

标签: flink sql 数据库

本文转载自: https://blog.csdn.net/shujuelin/article/details/127102609
版权归原作者 大数据指北 所有, 如有侵权,请联系我们删除。

“Dinky,让 Flink SQL 纵享丝滑”的评论:

还没有评论