💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。谢谢你的光临,让我们一起踏上这个知识之旅!
文章目录
🍋1. 部署 InternLM2-Chat-1.8B 模型进行智能对话
首先,打开 Intern Studio 界面,点击 创建开发机 配置开发机系统。
之后进入,点击终端输入环境配置命令
studio-conda -o internlm-base -t demo
# 与 studio-conda 等效的配置方案# conda create -n demo python==3.10 -y# conda activate demo# conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
配置完成后,进入到新创建的 conda 环境之中:
conda activate demo
输入以下命令,完成环境包的安装:
pip install huggingface-hub==0.17.3
pip installtransformers==4.34
pip installpsutil==5.9.8
pip installaccelerate==0.24.1
pip installstreamlit==1.32.2
pip installmatplotlib==3.8.3
pip installmodelscope==1.9.5
pip installsentencepiece==0.1.99
下载 InternLM2-Chat-1.8B 模型
按路径创建文件夹,并进入到对应文件目录中:
mkdir-p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo
通过左侧文件夹栏目,双击进入 demo 文件夹。
双击打开 /root/demo/download_mini.py 文件,复制以下代码:
import os
from modelscope.hub.snapshot_download import snapshot_download
# 创建保存模型目录
os.system("mkdir /root/models")# save_dir是模型保存到本地的目录save_dir="/root/models"
snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b",
cache_dir=save_dir,
revision='v1.1.0')
执行命令,下载模型参数文件:
python /root/demo/download_mini.py
运行 cli_demo
双击打开 /root/demo/cli_demo.py 文件,复制以下代码:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path ="/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()
system_prompt ="""You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages =[(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:
input_text = input("\nUser >>> ")
input_text = input_text.replace(' ', '')if input_text =="exit":break
length =0for response, _ in model.stream_chat(tokenizer, input_text, messages):
if response is not None:
print(response[length:], flush=True, end="")
length = len(response)
输入命令,执行 Demo 程序:
conda activate demo
python /root/demo/cli_demo.py
等待模型加载完成,之后就可以输入内容进行创作了
🍋2. 部署实战营优秀作品 八戒-Chat-1.8B 模型
简单介绍 八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳(实战营优秀作品)
八戒-Chat-1.8B、Chat-嬛嬛-1.8B、Mini-Horo-巧耳 均是在第一期实战营中运用 InternLM2-Chat-1.8B 模型进行微调训练的优秀成果。其中,八戒-Chat-1.8B 是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou 子项目之一,八戒-Chat-1.8B 能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。
当然,同学们也可以参考其他优秀的实战营项目,具体模型链接如下:
八戒-Chat-1.8B:https://www.modelscope.cn/models/JimmyMa99/BaJie-Chat-mini/summary
Chat-嬛嬛-1.8B:https://openxlab.org.cn/models/detail/BYCJS/huanhuan-chat-internlm2-1_8b
Mini-Horo-巧耳:https://openxlab.org.cn/models/detail/SaaRaaS/Horowag_Mini
配置基础环境
运行环境命令:
conda activate demo
使用 git 命令来获得仓库内的 Demo 文件:
cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2cd /root/Tutorial
下载运行 Chat-八戒 Demo
在 Web IDE 中执行 bajie_download.py:
python /root/Tutorial/helloworld/bajie_download.py
待程序下载完成后,输入运行命令:
streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address127.0.0.1 --server.port6006
待程序运行的同时,对端口环境配置本地 PowerShell 。使用快捷键组合 Windows + R(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。(Mac 用户打开终端即可)
打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):
# 从本地使用 ssh 连接 studio 端口# 将下方端口号 38374 替换成自己的端口号ssh-CNg-L6006:127.0.0.1:6006 [email protected] -p38374
再复制下方的密码,输入到 password 中,直接回车
打开 http://127.0.0.1:6006 后,等待加载完成即可进行对话。
🍋3. 使用 Lagent 运行 InternLM2-Chat-7B 模型
Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。
Lagent 的特性总结如下:
- 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。 接口统一,设计全面升级,提升拓展性,包括:
- Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
- Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
- Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
- 文档全面升级,API 文档全覆盖。
配置基础环境(开启 30% A100 权限后才可开启此章节)
打开 Intern Studio 界面,调节配置(必须在开发机关闭的条件下进行):
重新开启开发机,输入命令,开启 conda 环境:
conda activate demo
打开文件子路径
cd /root/demo
使用 git 命令下载 Lagent 相关的代码库:
git clone https://gitee.com/internlm/lagent.git
# git clone https://github.com/internlm/lagent.gitcd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install-e.# 源码安装
使用 Lagent 运行 InternLM2-Chat-7B 模型为内核的智能体
Intern Studio 在 share 文件中预留了实践章节所需要的所有基础模型,包括 InternLM2-Chat-7b 、InternLM2-Chat-1.8b 等等。我们可以在后期任务中使用 share 文档中包含的资源,但是在本章节,为了能让大家了解各类平台使用方法,还是推荐同学们按照提示步骤进行实验。
打开 lagent 路径:
cd /root/demo/lagent
在 terminal 中输入指令,构造软链接快捷访问方式:
ln-s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b
打开 lagent 路径下 examples/internlm2_agent_web_demo_hf.py 文件,并修改对应位置 (71行左右) 代码:
# 其他代码...value='/root/models/internlm2-chat-7b'# 其他代码...
输入运行命令 - 点开 6006 链接后,大约需要 5 分钟完成模型加载:
streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address127.0.0.1 --server.port6006
待程序运行的同时,对本地端口环境配置本地 PowerShell 。使用快捷键组合 Windows + R(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。(Mac 用户打开终端即可)
打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):
# 从本地使用 ssh 连接 studio 端口# 将下方端口号 38374 替换成自己的端口号ssh-CNg-L6006:127.0.0.1:6006 [email protected] -p38374
后面依次是输入密码,之后就可以直接访问了
🍋4. 实践部署 浦语·灵笔2 模型
初步介绍 XComposer2 相关知识
浦语·灵笔2 是基于 书生·浦语2 大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:
- 自由指令输入的图文写作能力: 浦语·灵笔2 可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。
- 准确的图文问题解答能力:浦语·灵笔2 具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。
- 杰出的综合能力: 浦语·灵笔2-7B 基于 书生·浦语2-7B 模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过 GPT-4V 和 Gemini Pro。
配置基础环境(开启 50% A100 权限后才可开启此章节)
选用 50% A100 进行开发:
进入开发机,启动 conda 环境:
conda activate demo
# 补充环境包
pip installtimm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5
下载 InternLM-XComposer 仓库 相关的代码资源:
cd /root/demo
git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.gitcd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626
在 terminal 中输入指令,构造软链接快捷访问方式:
ln-s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b
ln-s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /root/models/internlm-xcomposer2-vl-7b
图文写作实战(开启 50% A100 权限后才可开启此章节)
继续输入指令,用于启动 InternLM-XComposer:
cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py \--code_path /root/models/internlm-xcomposer2-7b \--private\--num_gpus1\--port6006
待程序运行的同时,参考章节 3.3 部分对端口环境配置本地 PowerShell 。步骤雷同
图片理解实战(开启 50% A100 权限后才可开启此章节)
根据附录 6.4 的方法,关闭并重新启动一个新的 terminal,继续输入指令,启动 InternLM-XComposer2-vl:
conda activate demo
cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_chat.py \--code_path /root/models/internlm-xcomposer2-vl-7b \--private\--num_gpus1\--port6006
打开 http://127.0.0.1:6006 (上传图片后) 键入内容示例如下:
请分析一下图中内容即可
🍋总结
原文地址如下:https://github.com/InternLM/Tutorial/blob/camp2/helloworld/hello_world.md
挑战与创造都是很痛苦的,但是很充实。
版权归原作者 小馒头学python 所有, 如有侵权,请联系我们删除。