0


SQL执行计划生成

继上次openGauss内核分析-统计信息与行数估计后, 继续硬核的云原生数据库openGauss的内核分析-执行计划生成。

SQL语句解析完成后被解析成Query结构,在进行优化时是以Query为单位进行的,Query的优化分为基于规则的逻辑优化(查询重写)和基于代价的物理优化(计划生成),主入口函数为subquery_planner。subquery_planner函数接收Query(查询树),返回一个Plan(计划树)。

  1. Plan* subquery_planner(PlannerGlobal* glob, Query* parse, PlannerInfo* parent_root, bool hasRecursion,
  2. double tuple_fraction, PlannerInfo** subroot, int options, ItstDisKey* diskeys, List* subqueryRestrictInfo)
  3. {
  4. PlannerInfo* root = NULL;
  5. Plan* plan = NULL; //返回结果
  6. preprocess_const_params(root, (Node*)parse->jointree); // 常数替换等式
  7. if (parse->hasSubLinks) {
  8. pull_up_sublinks(root); //提升子链接
  9. DEBUG_QRW("After sublink pullup");
  10. }
  11. /* Reduce orderby clause in subquery for join */
  12. reduce_orderby(parse, false); //减少orderby
  13. DEBUG_QRW("After order by reduce");
  14. if (u_sess->attr.attr_sql.enable_constraint_optimization) {
  15. removeNotNullTest(root); //删除NotNullTest
  16. DEBUG_QRW("After soft constraint removal");
  17. }
  18. if ((LAZY_AGG & u_sess->attr.attr_sql.rewrite_rule) && permit_from_rewrite_hint(root, LAZY_AGG)) {
  19. lazyagg_main(parse); // lazyagg重写
  20. DEBUG_QRW("After lazyagg");
  21. }
  22. parse->jointree = (FromExpr*)pull_up_subqueries(root, (Node*)parse->jointree); //提升子查询
  23. if (parse->setOperations) {
  24. flatten_simple_union_all(root); //UNIONALL优化
  25. DEBUG_QRW("After simple union all flatten");
  26. }
  27. expand_inherited_tables(root); //展开继承表
  28. parse->targetList = (List*)preprocess_expression(root, (Node*)parse->targetList, EXPRKIND_TARGET); //预处理表达式
  29. parse->havingQual = (Node *) newHaving; //处理HAVING子句
  30. reduce_outer_joins(root); //外连接消除
  31. reduce_inequality_fulljoins(root); //全连接重写
  32. plan = grouping_planner(root, tuple_fraction); //主要的计划过程
  33. return plan;
  34. }

subquery_planner函数由函数standard_planner调用,standard_planner函数由exec_simple_query->pg_plan_queries->pg_plan_query->planner函数调用。standard_planner将Query(查询树)生成规划好的语句,可用于执行器实际执行。

  1. PlannedStmt* standard_planner(Query* parse, int cursorOptions, ParamListInfo boundParams)
  2. {
  3. PlannedStmt* result = NULL; //返回结果
  4. PlannerGlobal* glob = NULL;
  5. double tuple_fraction;
  6. PlannerInfo* root = NULL;
  7. Plan* top_plan = NULL;
  8. glob = makeNode(PlannerGlobal);
  9. /* primary planning entry point (may recurse for subqueries) */
  10. top_plan = subquery_planner(glob, parse, NULL, false, tuple_fraction, &root); //主规划过程入口
  11. /* build the PlannedStmt result */
  12. result = makeNode(PlannedStmt); //构造PlannedStmt
  13. result->commandType = parse->commandType;
  14. result->queryId = parse->queryId;
  15. result->uniqueSQLId = parse->uniqueSQLId;
  16. result->hasReturning = (parse->returningList != NIL);
  17. result->hasModifyingCTE = parse->hasModifyingCTE;
  18. result->canSetTag = parse->canSetTag;
  19. result->transientPlan = glob->transientPlan;
  20. result->dependsOnRole = glob->dependsOnRole;
  21. result->planTree = top_plan; //执行计划
  22. result->rtable = glob->finalrtable;
  23. result->resultRelations = glob->resultRelations;
  24. return result;
  25. }

仍然以前文的join列子来说明

SELECT * FROM t1 inner JOIN t2 ON t1.c1 = t2.c1;

在planner函数打断点,用gdb查看standard_planner返回的PlannedStmt

  1. (gdb) bt
  2. #0 planner (parse=0x7fd93a410288, cursorOptions=0, boundParams=0x0) at planner.cpp:389
  3. #1 0x0000000001936fbd in pg_plan_query (querytree=0x7fd93a410288, cursorOptions=0, boundParams=0x0, underExplain=false) at postgres.cpp:1197
  4. #2 0x0000000001937381 in pg_plan_queries (querytrees=0x7fd939b81090, cursorOptions=0, boundParams=0x0) at postgres.cpp:1315
  5. #3 0x000000000193a6b8 in exec_simple_query (query_string=0x7fd966ad2060 "SELECT * FROM t1 inner JOIN t2 ON t1.c1 = t2.c1;", messageType=QUERY_MESSAGE, msg=0x7fd931056210)
  6. at postgres.cpp:2560
  7. #4 0x0000000001947104 in PostgresMain (argc=1, argv=0x7fd93a2cf1c0, dbname=0x7fd93a2ce1f8 "postgres", username=0x7fd93a2ce1b0 "test") at postgres.cpp:8403
  8. #5 0x0000000001890740 in BackendRun (port=0x7fd931056720) at postmaster.cpp:8053
  9. #6 0x00000000018a00b1 in GaussDbThreadMain<(knl_thread_role)1> (arg=0x7fd97c55c5f0) at postmaster.cpp:12181
  10. #7 0x000000000189c0de in InternalThreadFunc (args=0x7fd97c55c5f0) at postmaster.cpp:12755
  11. #8 0x00000000024bf7d8 in ThreadStarterFunc (arg=0x7fd97c55c5e0) at gs_thread.cpp:382
  12. #9 0x00007fd9a60cfdd5 in start_thread () from /lib64/libpthread.so.0
  13. #10 0x00007fd9a5df8ead in clone () from /lib64/libc.so.6
  1. (gdb) p *result
  2. $14 = {type = T_PlannedStmt, commandType = CMD_SELECT, queryId = 0, hasReturning = false, hasModifyingCTE = false, canSetTag = true, transientPlan = false, dependsOnRole = false,
  3. planTree = 0x7fd93a409d58, rtable = 0x7fd939b81660, …}
  4. (gdb) p *result->planTree->lefttree
  5. $46 = {type = T_SeqScan, plan_node_id = 2, parent_node_id = 1, exec_type = EXEC_ON_DATANODES, startup_cost = 0, total_cost = 1.03, plan_rows = 3, multiple = 1, plan_width = 8,…}

将Query规划后得到PlannedStmt

可以看到,Plannedstmt 与explain执行计划是一致的

openGauss: 一款高性能、高安全、高可靠的企业级开源关系型数据库。

🍒如果您觉得博主的文章还不错或者有帮助的话,请关注一下博主,如果三连收藏支持就更好啦!谢谢各位大佬给予的鼓励!

标签: java 数据库 sql

本文转载自: https://blog.csdn.net/GaussDB/article/details/126124734
版权归原作者 Gauss松鼠会 所有, 如有侵权,请联系我们删除。

“SQL执行计划生成”的评论:

还没有评论