0


Spark RDD 基本操作

Spark RDD 基本操作

在前面已经介绍过Spark RDD的两种操作分别是:

Transformation(转换操作)
Action(行动操作)

下面以例子的方式详细介绍Spark RDD的这两种操作涉及的函数。

Transformation(转换操作)

Transformation用于对RDD的创建,同时还提供大量操作方法,包括

map

filter

groupBy

join

等,RDD利用这些操作生成新的RDD,但是需要注意,无论多少次Transformation,在RDD中真正数据计算Action之前都不会真正运行。

map()函数

RDD.map(func)

,map接受一个函数作为参数,作用于RDD中的每个对象,并将返回结果作为结果RDD中对应的元素的值。

Scala

scala> val nums = sc.parallelize(List(1,2,3,4))
nums: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:27
scala>nums.take(4).foreach(println)
1
2
3
4

Python

>>> nums = sc.parallelize([1,2,3,4])
>>> for num in nums.take(4):
...     print num
...
1
2
3
4
>>> new_nums = nums.map(lambda x: x*2)
>>> for new_num in new_nums.take(4):
...     print new_num
...
2
4
6
8

flatMap()函数

RDD.flatMap(func)

,和map类似,只不过map返回的是一个个元素,而flatMap返回的则是一个返回值序列的迭代器。

Scala

scala> val string = sc.parallelize(List("i love you"))
string: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at parallelize at <console>:27
scala> val new_str = string.flatMap(line=>line.split(" "))
new_str: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[6] at flatMap at <console>:29
scala> new_str.take(3).foreach(println)
i
love
you

Python

>>> string = sc.parallelize(["i love you"])
>>> new_str = string.flatMap(lambda str:str.split(" "))</span>
>>> for str in new_str.take(3):
...     print str
... 
i
love
you

filter()函数

RDD.filter(func)

,接受一个函数作为参数,并将RDD中满足该函数的元素放入新的RDD中返回。

Scala

scala> val string = sc.parallelize(List("i love you"))
string: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[7] at parallelize at <console>:27
scala> string.first()
res3: String = i love you
scala>
<pre name="code" class="java">scala> val string = sc.parallelize(List("I love you"))
scala> val new_str = string.filter(line =>line.contains("love"))
new_str: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[6] at filter at <console>:23
scala> new_str.foreach(println)
I love you

Python

>>> string = sc.parallelize(["i love you"])
>>> new_str = string.filter(lambda line : "you" in line)
>>> new_str.first()
'i love you'

union()函数

RDD1.union(RDD2)

,操作对象为两个RDD,返回一个新的RDD,转化操作可以操作任意数量的输入RDD。

Scala

scala> val num1 = sc.parallelize(List(1,2,3))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27
scala> val num2 = sc.parallelize(List(4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:27
scala> val num3 = num1.union(num2)
mum3: org.apache.spark.rdd.RDD[Int] = UnionRDD[2] at union at <console>:31
scala> num3.count()
res1: Long = 6
scala> num3.foreach(println)
3
1
2
4
5
6

Python

>>> num1 = sc.parallelize([1,2,3])
>>> num2 = sc.parallelize([4,5,6])
>>> num3 = num1.union(num2)
>>> for num in num3.take(6):
...     print num
...
1
2
3
4
5
6

filter()函数

RDD.filter(func)

,接受一个函数作为参数,并将RDD中满足该函数的元素放入新的RDD中返回。

Python

>>> string = sc.parallelize(["i love you"])
>>> new_str = string.filter(lambda line : "you" in line)
>>> new_str.first()
'i love you'

Scala

scala> val string = sc.parallelize(List("i love you"))
string: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[7] at parallelize at <console>:27
scala> string.first()
res3: String = i love you
scala>
<pre name="code" class="java">scala> val string = sc.parallelize(List("I love you"))
scala> val new_str = string.filter(line =>line.contains("love"))
new_str: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[6] at filter at <console>:23
scala> new_str.foreach(println)
I love you

union()函数

RDD1.union(RDD2)

,操作对象为两个RDD,返回一个新的RDD,转化操作可以操作任意数量的输入RDD。

Scala

scala> val num1 = sc.parallelize(List(1,2,3))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27
scala> val num2 = sc.parallelize(List(4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:27
scala> val num3 = num1.union(num2)
mum3: org.apache.spark.rdd.RDD[Int] = UnionRDD[2] at union at <console>:31
scala> num3.count()
res1: Long = 6
scala> num3.foreach(println)
3
1
2
4
5
6

Python

>>> num1 = sc.parallelize([1,2,3])
>>> num2 = sc.parallelize([4,5,6])
>>> num3 = num1.union(num2)
>>> for num in num3.take(6):
...     print num
... 
1
2
3
4
5
6

distinct()函数

RDD.distinct()

,该函数作用就是去重,但其操作的开销大,因为它需要所有数据通过网络进行混洗。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,3))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:27
scala> val num2 = num1.distinct()
num2: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[7] at distinct at <console>:29
scala> num2.foreach(println)
2
3
1

Python

>>> nums1 = sc.parallelize([1,2,3,3])
>>> nums1.count()
4
>>> nums2=nums1.distinct()
>>> nums2.count()
3
>>>

intersection()函数

RDD1.intersection(RDD2)

,返回两个RDD中都有的元素,类似于集合中的交集。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at <console>:27
scala> val num2 = sc.parallelize(List(3,4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:27
scala> val num3 = num1.intersection(num2)
num3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[16] at intersection at <console>:31
scala> num3.foreach(println)
4
3

Python

>>> nums_1=sc.parallelize([1,2,3,4,5])
>>> nums_2=sc.parallelize([3,4,5,6,7])
>>> nums_3=nums_1.intersection(nums_2)
>>> nums_3.count()
[Stage 7:>                                     (0 +         3
>>> for num in nums_3.take(3):
...     print num
...
3
4
5
>>>

subtract()函数

RDD1.subtract(RDD2)

,接受一个RDD作为参数,返回一个由只存在第一个RDD1而不存在与第二个RDD2中的所有元素组成的RDD。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at parallelize at <console>:27
scala> val num2 = sc.parallelize(List(3,4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[18] at parallelize at <console>:27
scala> val num3 = num1.subtract(num2)
num3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[22] at subtract at <console>:31
scala> num3.foreach(println)
2
1

Python

>>> nums_4 = nums_1.subtract(nums_2)
>>> nums_4.count()
2
>>> for num in nums_4.take(2):
...     print num
...
1
2
>>>

cartesian()函数

RDD1.cartesian(RDD2)

,求笛卡尔积,求出所有可能的

(a,b)

对。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[23] at parallelize at <console>:27
scala> val num2 = sc.parallelize(List(3,4,5,6))
num2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[24] at parallelize at <console>:27
scala> val num3 = num1.cartesian(num2)
num3: org.apache.spark.rdd.RDD[(Int, Int)] = CartesianRDD[25] at cartesian at <console>:31
scala> num3.foreach(println)
(1,3)
(1,5)
(1,6)
(1,4)
(2,3)
(2,4)
(3,3)
(2,5)
(2,6)
(3,4)
(3,6)
(4,3)
(3,5)
(4,5)
(4,4)
(4,6)

Python

>>> nums_5 = nums_1.cartesian(nums_2)
>>> nums_5
org.apache.spark.api.java.JavaPairRDD@5617ade8
>>> nums_5.first()
(1, 3)
>>>

sample()函数

sample(withReplacement,traction,[send])

对RDD采样以及是否转换。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[37] at parallelize at <console>:27
scala> val num2 = num1.sample(false,0.5)
num2: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[38] at sample at <console>:29
scala> num2.foreach(println)
2
3

Python

>>> nums = sc.parallelize([1,2,3,4,5,6,7])
>>> new_nums = nums.sample(False,0.5)
>>> new_nums
PythonRDD[106] at RDD at PythonRDD.scala:43
>>> new_nums.count()
5
>>> for n in new_nums.take(5):
...     print n
...
1
3
5
6
7

Action(行动操作)

Action是数据执行部分,其通过执行count,reduce,collect等方法真正执行数据的计算部分。实际上,RDD中所有的操作都是Lazy模式进行,运行在编译中不会立即计算最终结果,而是记住所有操作步骤和方法,只有显示的遇到启动命令才执行。这样做的好处在于大部分前期工作在Transformation时已经完成,当Action工作时,只需要利用全部自由完成业务的核心工作。

count()函数

RDD.count()

,是统计RDD中元素的个数,返回的是一个整数。

Scala

scala> val num1 = sc.parallelize(List(1,2,3))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:27
scala> num1.count()
res3: Long = 3

Python

>>> nums = sc.parallelize([1,2,3,4])
>>> nums.count()
[Stage 0:>                                                          (0 +[Stage 0:>                                                          (0 +[Stage 0:==============>
 (1 +
 4
>>>

collect()函数

RDD.collect()

,用来收集数据,保存在一个新的数据结构中,用来持久化,需要注意的是collect不能用在大规模数据集上。

Scala

scala> val num2=num1.collect()
num2: Array[Int] = Array(1, 2, 3)
scala> num2
res4: Array[Int] = Array(1, 2, 3)
scala>

Python

>>> new_nums = nums.collect()
>>> new_nums
[1, 2, 3, 4]
>>>

take()函数

RDD.take(num)

,用于取回num个value,在这里结合map使用,方便查看值。

Scala

scala> val nums = sc.parallelize(List(1,2,3,4))
nums: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:27
scala>nums.take(4).foreach(println)
1
2
3
4

Python

>>> nums = sc.parallelize([1,2,3,4])
>>> for num in nums.take(4):
...     print num
...
1
2
3
4
>>> new_nums = nums.map(lambda x: x*2)
>>> for new_num in new_nums.take(4):
...     print new_num
...
2
4
6
8

reduce()函数

RDD.reduce(func)

,接受一个函数作为参数,操作两个RDD的元素类型的数据并返回一个同样类型的新元素。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at <console>:27
scala> val num2 = num1.reduce((x,y)=>x+y)
num2: Int = 10

Python

>>> nums=sc.parallelize([1,2,3,4,5,6])
>>> nums.reduce(lambda x,y:x+y)
21
>>>

aggregate()函数

aggregate()

函数需要我们提供期待返回的类型的初始值,然后通过一个函数把RDD中的元素合并起来放入累加器,考虑到每个节点是在本地累加的,最终,还需要通过第二个函数把累加器两两合并。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[30] at parallelize at <console>:27
scala> val result = num1.aggregate((0,0))(
     | (acc,value) => (acc._1 + value,acc._2+1),
     | (acc1,acc2) =>(acc1._1+acc2._1,acc1._2+acc2._2)
     | )
result: (Int, Int) = (10,4)
scala> val avg = result._1/result._2.toDouble
avg: Double = 2.5
scala>

Python

>>> nums = sc.parallelize([1,2,3,4])
>>> sumCount = nums.aggregate( (0,0),
... (lambda acc,value:(acc[0]+value,acc[1]+1)),
... (lambda acc1,acc2:(acc1[0]+acc2[0],acc1[1]+acc2[1])))
>>> sumCount[0]/float(sumCount[1])
2.5
>>>

foreach()函数

RDD.foreach(func)

,对RDD中的每个元素使用给定的函数。

Scala

scala> def add(x:Int)={
     |  println (x+2)
     | }
add: (x: Int)Unit
scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[36] at parallelize at <console>:27
scala> num1.foreach(add)
6
5
3
4

Python

>>> nums = sc.parallelize([1,2,3])
>>> def add(x):
...     print "\n","x+2:",x+2
... 
>>> nums.foreach(add)
x+2: 5
x+2: 3
x+2: 4

top()函数

RDD.top(num)

,从RDD中返回前边的num个元素。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[31] at parallelize at <console>:27
scala> num1.top(2)
res10: Array[Int] = Array(4, 3)
scala>

Python

>>> nums = sc.parallelize([1,2,3])
>>> def add(x):
...     print "\n","x+2:",x+2
... 
>>> nums.foreach(add)
x+2: 5
x+2: 3
x+2: 4

takeSample()函数

RDD.takeSample(withReplacement,num,[send])

,从RDD中返回任意一些元素。

Scala

scala> val num1 = sc.parallelize(List(1,2,3,4))
num1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[39] at parallelize at <console>:27
scala> val num2 = num1.takeSample(false,2)
num2: Array[Int] = Array(3, 4)

Python

>>> nums = sc.parallelize([1,2,3,4,5,6,7])
>>> new_nums= nums.takeSample(False,5)
>>> new_nums
[5, 3, 4, 6, 7]

Spark 转换操作和行动操作函数汇总

Spark 转换操作

函数名作用map()参数是函数,函数应用于RDD每一个元素,返回值是新的RDDflatMap()参数是函数,函数应用于RDD每一个元素,将元素数据进行拆分,变成迭代器,返回值是新的RDDfilter()参数是函数,函数会过滤掉不符合条件的元素,返回值是新的RDDdistinct()没有参数,将RDD里的元素进行去重操作union()参数是RDD,生成包含两个RDD所有元素的新RDDintersection()参数是RDD,求出两个RDD的共同元素subtract()参数是RDD,将原RDD里和参数RDD里相同的元素去掉cartesian()参数是RDD,求两个RDD的笛卡儿积

Spark action操作

函数名作用collect()返回RDD所有元素count()RDD里元素个数countByValue()各元素在RDD中出现次数reduce()并行整合所有RDD数据,例如求和操作fold(0)(func)和reduce功能一样,不过fold带有初始值aggregate(0)(seqOp,combop)和reduce功能一样,但是返回的RDD数据类型和原RDD不一样foreach(func)对RDD每个元素都是使用特定函数


本文转载自: https://blog.csdn.net/king14bhhb/article/details/136985281
版权归原作者 不二人生 所有, 如有侵权,请联系我们删除。

“Spark RDD 基本操作”的评论:

还没有评论