0


基础的强化学习(RL)算法及代码详细demo

文章目录

  • gym环境: https://www.gymlibrary.dev/
  • 环境安装:- 我的版本:packagemodulegym0.24.0ale-py0.7.5torch1.11.0torchvision0.12.0tensorboard2.6.0- 安装方法:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple gympip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_pypip install gym[atari]pip uninstall ale-pypip install ale-py安装box2d: 可能会遇到building wheel failed for box2d在 https://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载相应的 PyBox2D的whl文件然后在命令行:pip install D:\FILES\PYTHON_PROJECTS\Box2D-2.3.10-cp37-cp37m-win_amd64.whl

一、Sarsa (悬崖问题)

1.1 CliffWalking-v0环境介绍

在一个4x12的网格中,智能体以网格的左下角位置为起点,以网格的下角位置为终点,目标是移动智能体到达终点位置,智能体每次可以在上、下、左、右这4个方向中移动一步,每移动一步会得到 -1 的奖励。

在这里插入图片描述

  • 如果智能体“掉入悬崖” ,会立即回到起点位置,并得到-100单位的奖励
  • 当智能体移动到终点时,该回合结束,该回合总奖励为各步奖励之和
import gym

env = gym.make("CliffWalking-v0")
observation = env.reset() 
env.render()

在这里插入图片描述

  • 从起点到终点最少需要13步,每步得到-1的reward。我们的目标也是要通过RL训练出一个模型,使得该模型能在测试中一个episode的reward能够接近于-13左右。

1.2 Sarsa算法流程

算法参数: 步长

      α 
     
    
      < 
     
    
      1 
     
    
   
     \alpha<1 
    
   
 α<1 极小值 
  
   
    
    
      ϵ 
     
    
   
     \epsilon 
    
   
 ϵ (两个超参数)

对于所有

      Q 
     
    
      ( 
     
    
      s 
     
    
      , 
     
    
      a 
     
    
      ) 
     
    
   
     Q(s,a) 
    
   
 Q(s,a)随机初始化,终点处$ Q(s_{end},a) = 0$

for (each trajectory):

初始化

       S 
      
     
    
      S 
     
    
  S


   
    
     
      
      
        a 
       
      
        t 
       
      
     
       = 
      
     
       ϵ 
      
     
       − 
      
     
       g 
      
     
       r 
      
     
       e 
      
     
       e 
      
     
       d 
      
     
       y 
      
      
     
       ( 
      
      
      
        s 
       
      
        t 
       
      
     
       ) 
      
     
    
      a_t = \epsilon -greedy \quad(s_t) 
     
    
  at​=ϵ−greedy(st​)

for (each step):

执行

          a 
         
        
          t 
         
        
       
      
        a_t 
       
      
    at​,得到 
     
      
       
       
         ( 
        
        
        
          r 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         , 
        
        
        
          s 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         ) 
        
       
      
        (r_{t+1},s_{t+1}) 
       
      
    (rt+1​,st+1​)


     
      
       
        
        
          a 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         = 
        
       
         ϵ 
        
       
         − 
        
       
         g 
        
       
         r 
        
       
         e 
        
       
         e 
        
       
         d 
        
       
         y 
        
        
       
         ( 
        
        
        
          s 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         ) 
        
       
      
        a_{t+1} = \epsilon -greedy \quad(s_{t+1}) 
       
      
    at+1​=ϵ−greedy(st+1​)


     
      
       
       
         Q 
        
       
         ( 
        
        
        
          s 
         
        
          t 
         
        
       
         , 
        
        
        
          a 
         
        
          t 
         
        
       
         ) 
        
       
         = 
        
       
         Q 
        
       
         ( 
        
        
        
          s 
         
        
          t 
         
        
       
         , 
        
        
        
          a 
         
        
          t 
         
        
       
         ) 
        
       
         + 
        
       
         α 
        
       
         [ 
        
        
        
          r 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         + 
        
       
         γ 
        
       
         Q 
        
       
         ( 
        
        
        
          s 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         , 
        
        
        
          a 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         ) 
        
       
         − 
        
       
         Q 
        
       
         ( 
        
        
        
          s 
         
        
          t 
         
        
       
         , 
        
        
        
          a 
         
        
          t 
         
        
       
         ) 
        
       
         ] 
        
       
      
        Q(s_{t},a_{t})=Q(s_{t},a_{t})+\alpha[r_{t+1}+\gamma Q(s_{t+1},a_{t+1})-Q(s_{t},a_{t})] 
       
      
    Q(st​,at​)=Q(st​,at​)+α[rt+1​+γQ(st+1​,at+1​)−Q(st​,at​)]


     
      
       
        
        
          s 
         
        
          t 
         
        
       
         = 
        
        
        
          s 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         , 
        
        
        
          a 
         
        
          t 
         
        
       
         = 
        
        
        
          a 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
      
        s_t = s_{t+1},a_t = a_{t+1} 
       
      
    st​=st+1​,at​=at+1​

1.3 具体代码

import numpy as np
import gym
import time

classSarsaAgent:def__init__(self, obs_n, act_n, learning_rate=0.01, gamma=0.9, e_greed=0.1):
        self.act_n = act_n
        self.lr = learning_rate
        self.gamma = gamma
        self.epsilon = e_greed
        self.Q = np.zeros((obs_n, act_n))# e_greed:根据s_t,选择a_tdefsample(self,obs):if np.random.uniform(0,1)<(1.0- self.epsilon):
            action = self.predict(obs)else:
            action = np.random.choice(self.act_n)# 0,1,2,3return action
    # a_t = argmax Q(s)defpredict(self, obs):
        Q_list = self.Q[obs,:]#当前s下所有a对应的Q值
        maxQ = np.max(Q_list)
        action_list = np.where(Q_list == maxQ)[0]# action_list=所有=Qmax的索引
        action = np.random.choice(action_list)return action
    
    deflearn(self, obs, action, reward, next_obs, next_action, done):# (S,A,R,S,A)'''
        done: episode是否结束
        '''
        predict_Q = self.Q[obs,action]if done:
            target_Q = reward
        else:
            target_Q = reward + self.gamma * self.Q[next_obs,next_action]# 更新Q表格
        self.Q[obs,action]+= self.lr *(target_Q - predict_Q)defsave(self):
        npy_file ='./q-table.npy'
        np.save(npy_file, self.Q)print(npy_file +' saved.')defload(self, npy_file='./q_table.npy'):
        self.Q = np.load(npy_file)print(npy_file +' loaded.')defrun_episode(env, agent, render=False):
    total_steps =0# 记录当前episode走了多少step
    total_reward =0 
    obs = env.reset()
    action = agent.sample(obs)whileTrue:
        next_obs, reward, done, _ = env.step(action)
        next_action = agent.sample(next_obs)
        agent.learn(obs, action, reward, next_obs, next_action, done)
        action = next_action
        obs = next_obs
        total_reward += reward
        total_steps +=1if render:
            env.render()
            time.sleep(0.)if done:breakreturn total_reward, total_steps

deftest_episode(env, agent): 
    total_steps =0# 记录当前episode走了多少step
    total_reward =0 
    obs = env.reset()whileTrue:
        action = agent.predict(obs)
        next_obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps +=1
        obs = next_obs
        time.sleep(0.5)
        env.render()if done:breakreturn total_reward, total_steps

defmain():
    env = gym.make("CliffWalking-v0")
    agent = SarsaAgent(obs_n=env.observation_space.n, 
                       act_n=env.action_space.n,
                       learning_rate=0.025, gamma=0.9, e_greed=0.1)for episode inrange(1000):
        total_reward, total_steps = run_episode(env, agent,False)print('Episode %s: total_steps = %s , total_reward = %.1f'%(episode, total_steps, total_reward))
    test_episode(env, agent)

main()

1.4 演示效果

训练了1000个episode,

     r 
    
   
     e 
    
   
     w 
    
   
     a 
    
   
     r 
    
   
     d 
    
   
     = 
    
   
     − 
    
   
     23 
    
   
  
    reward=-23 
   
  
reward=−23

在这里插入图片描述

二、Q-Learning (悬崖问题)

2.1 CliffWalking-v0环境介绍

(介绍见1.1)

2.2 Q-Learning算法流程

(Q-Learning其实真正执行的策略和Sarsa是一样的,只不过学习的策略是保守的最优策略)

算法参数: 步长

      α 
     
    
      < 
     
    
      1 
     
    
   
     \alpha<1 
    
   
 α<1 极小值 
  
   
    
    
      ϵ 
     
    
   
     \epsilon 
    
   
 ϵ (两个超参数)

对于所有

      Q 
     
    
      ( 
     
    
      s 
     
    
      , 
     
    
      a 
     
    
      ) 
     
    
   
     Q(s,a) 
    
   
 Q(s,a)随机初始化,终点处 
  
   
    
    
      Q 
     
    
      ( 
     
     
     
       s 
      
      
      
        e 
       
      
        n 
       
      
        d 
       
      
     
    
      , 
     
    
      a 
     
    
      ) 
     
    
      = 
     
    
      0 
     
    
   
     Q(s_{end},a) = 0 
    
   
 Q(send​,a)=0

for (each trajectory):

初始化

       S 
      
     
    
      S 
     
    
  S

for (each step):

          a 
         
        
          t 
         
        
       
         = 
        
       
         ϵ 
        
       
         − 
        
       
         g 
        
       
         r 
        
       
         e 
        
       
         e 
        
       
         d 
        
       
         y 
        
        
       
         ( 
        
        
        
          s 
         
        
          t 
         
        
       
         ) 
        
       
      
        a_{t} = \epsilon -greedy \quad(s_{t}) 
       
      
    at​=ϵ−greedy(st​)(行为策略)

执行

          a 
         
        
          t 
         
        
       
      
        a_t 
       
      
    at​,得到 
     
      
       
       
         ( 
        
        
        
          r 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         , 
        
        
        
          s 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         ) 
        
       
      
        (r_{t+1},s_{t+1}) 
       
      
    (rt+1​,st+1​)


     
      
       
       
         Q 
        
       
         ( 
        
        
        
          s 
         
        
          t 
         
        
       
         , 
        
        
        
          a 
         
        
          t 
         
        
       
         ) 
        
       
         = 
        
       
         Q 
        
       
         ( 
        
        
        
          s 
         
        
          t 
         
        
       
         , 
        
        
        
          a 
         
        
          t 
         
        
       
         ) 
        
       
         + 
        
       
         α 
        
       
         [ 
        
        
        
          r 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         + 
        
       
         γ 
        
        
         
          
          
            m 
           
          
            a 
           
          
            x 
           
          
         
           a 
          
         
        
       
         Q 
        
       
         ( 
        
        
        
          s 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
         , 
        
       
         a 
        
       
         ) 
        
       
         − 
        
       
         Q 
        
       
         ( 
        
        
        
          s 
         
        
          t 
         
        
       
         , 
        
        
        
          a 
         
        
          t 
         
        
       
         ) 
        
       
         ] 
        
       
      
        Q(s_{t},a_{t})=Q(s_{t},a_{t})+\alpha[r_{t+1}+\gamma \underset{a}{max}Q(s_{t+1},a)-Q(s_{t},a_{t})] 
       
      
    Q(st​,at​)=Q(st​,at​)+α[rt+1​+γamax​Q(st+1​,a)−Q(st​,at​)]


     
      
       
        
        
          s 
         
        
          t 
         
        
       
         = 
        
        
        
          s 
         
         
         
           t 
          
         
           + 
          
         
           1 
          
         
        
       
      
        s_t = s_{t+1} 
       
      
    st​=st+1​

2.3 具体代码

import numpy as np
import gym
import time

classQLearningAgent:def__init__(self, obs_n, act_n, learning_rate=1e-2, gamma=0.9, e_greed=0.1):
        self.act_n = act_n  # 动作维度,有几个动作可选
        self.lr = learning_rate  # 学习率
        self.gamma = gamma  # reward的衰减率
        self.epsilon = e_greed  # 按一定概率随机选动作
        self.Q = np.zeros((obs_n, act_n))defsample(self, obs):if np.random.uniform(0,1)<(1.0- self.epsilon):# 根据table的Q值选动作
            action = self.predict(obs)else:
            action = np.random.choice(self.act_n)# 有一定概率随机探索选取一个动作return action
    # 根据输入观察值,预测输出的动作值defpredict(self, obs):
        Q_list = self.Q[obs,:]
        maxQ = np.max(Q_list)
        action_list = np.where(Q_list == maxQ)[0]# maxQ可能对应多个action
        action = np.random.choice(action_list)return action
    deflearn(self, obs, action, reward, next_obs, done):#(S,A,R,S)
        predict_Q = self.Q[obs, action]if done:
            target_Q = reward
        else:
            target_Q = reward + self.gamma * np.max(self.Q[next_obs,:])
        self.Q[obs, action]+= self.lr *(target_Q - predict_Q)defsave(self):
        npy_file ='./q-table.npy'
        np.save(npy_file, self.Q)print(npy_file +' saved.')defload(self, npy_file='./q_table.npy'):
        self.Q = np.load(npy_file)print(npy_file +' loaded.')defrun_episode(env, agent, render=False):# 其实真正执行的策略和Sarsa是一样的,只不过学习的策略是保守的最优策略
    total_steps =0
    total_reward =0
    obs = env.reset()whileTrue:
        action = agent.sample(obs)
        next_obs, reward, done, _ = env.step(action)
        agent.learn(obs, action, reward, next_obs, done)
        obs = next_obs

        total_reward += reward
        total_steps +=1if render:
            env.render()if done:breakreturn total_reward, total_steps

deftest_episode(env, agent):
    total_reward =0
    obs = env.reset()whileTrue:
        action = agent.predict(obs)# greedy
        next_obs, reward, done, _ = env.step(action)
        total_reward += reward
        obs = next_obs
        time.sleep(0.5)
        env.render()if done:breakreturn total_reward

defmain():
    env = gym.make("CliffWalking-v0")# 0 up, 1 right, 2 down, 3 left# 创建一个agent实例,输入超参数
    agent = QLearningAgent(
        obs_n=env.observation_space.n,
        act_n=env.action_space.n,
        learning_rate=0.1,
        gamma=0.9,
        e_greed=0.1)# 训练500个episode,打印每个episode的分数for episode inrange(500):
        ep_reward, ep_steps = run_episode(env, agent,False)print('Episode %s: steps = %s , reward = %.1f'%(episode, ep_steps, ep_reward))# 全部训练结束,查看算法效果
    test_reward = test_episode(env, agent)print('test reward = %.1f'%(test_reward))

main()

2.4 演示效果

在这里插入图片描述

三、PG 策略梯度 (倒立摆)

3.1 CartPole-v1环境介绍

(Cart Pole - Gym Documentation (gymlibrary.dev))

一根杆通过一个未驱动的关节连接到一辆小车上,小车沿着一条无摩擦的轨道移动。将钟摆垂直放置在推车上,目标是通过在推车上施加左右方向的力来平衡杆。

倒立摆:
在这里插入图片描述

在这里插入图片描述

  • **obs: (1,4)**NumObservationMinMax0Cart Position0-4.84.81Cart Velocity-InfInf2Pole Angle-0.418 rad0.418 rad3Pole Angular Velocity-InfInf
  • **action: (1,2)**动作空间是离散的:NumAction0向左推车1向右推车
  • reward每活着经过一个时间步,奖励 + 1。
  • 终止条件:- ① Pole Angle > 12°- ② |水平位置|>2.4’- ③ 超过500步

3.2 PG算法流程(REINFORCE)

输入: 可微调的策略参数

      π 
     
    
      ( 
     
    
      a 
     
    
      ∣ 
     
    
      s 
     
    
      , 
     
    
      θ 
     
    
      ) 
     
    
   
     \pi(a|s,\theta) 
    
   
 π(a∣s,θ)

算法参数: 步长大小

      α 
     
    
      > 
     
    
      0 
     
    
   
     \alpha>0 
    
   
 α>0

初始化的策略参数

      θ 
     
    
   
     \theta 
    
   
 θ

循环(each trajectory):

根据

       π 
      
     
       ( 
      
     
       ⋅ 
      
     
       ∣ 
      
     
       ⋅ 
      
     
       , 
      
     
       θ 
      
     
       ) 
      
     
    
      \pi(\cdot|\cdot,\theta) 
     
    
  π(⋅∣⋅,θ),生成 
   
    
     
      
      
        S 
       
      
        0 
       
      
     
       , 
      
      
      
        A 
       
      
        0 
       
      
     
       , 
      
      
      
        R 
       
      
        1 
       
      
     
       , 
      
     
       . 
      
     
       . 
      
     
       . 
      
      
      
        S 
       
       
       
         T 
        
       
         − 
        
       
         1 
        
       
      
     
       , 
      
      
      
        A 
       
       
       
         T 
        
       
         − 
        
       
         1 
        
       
      
     
       , 
      
      
      
        R 
       
      
        T 
       
      
     
    
      S_0,A_0,R_1,...S_{T-1},A_{T-1},R_{T} 
     
    
  S0​,A0​,R1​,...ST−1​,AT−1​,RT​

对一个回合的每一步进行循环,

       t 
      
     
       = 
      
     
       0 
      
     
       , 
      
     
       1 
      
     
       , 
      
     
       . 
      
     
       . 
      
     
       . 
      
     
       , 
      
     
       T 
      
     
       − 
      
     
       1 
      
     
    
      t=0,1,...,T-1 
     
    
  t=0,1,...,T−1
        G 
       
      
        = 
       
       
       
         ∑ 
        
        
        
          k 
         
        
          = 
         
        
          t 
         
        
          + 
         
        
          1 
         
        
       
         T 
        
       
       
       
         γ 
        
        
        
          k 
         
        
          − 
         
        
          t 
         
        
          − 
         
        
          1 
         
        
       
       
       
         R 
        
       
         k 
        
       
      
     
       G = \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k 
      
     
   G=∑k=t+1T​γk−t−1Rk​


    
     
      
      
        θ 
       
      
        = 
       
      
        θ 
       
      
        + 
       
      
        α 
       
       
       
         γ 
        
       
         t 
        
       
      
        G 
       
      
        ▽ 
       
      
        l 
       
      
        n 
       
      
        [ 
       
      
        π 
       
      
        ( 
       
       
       
         a 
        
       
         t 
        
       
      
        ∣ 
       
       
       
         s 
        
       
         t 
        
       
      
        , 
       
      
        θ 
       
      
        ) 
       
      
        ] 
       
      
     
       \theta = \theta + \alpha \gamma^t G \bigtriangledown ln[\pi(a_t|s_t,\theta)] 
      
     
   θ=θ+αγtG▽ln[π(at​∣st​,θ)]

3.3 具体代码

import torch
import gym
import numpy as np
import torch.nn as nn
from torch.nn import Linear
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
import time

lr =0.002
gamma =0.8classPGPolicy(nn.Module):def__init__(self, input_size=4, hidden_size=128, output_size=2):super(PGPolicy, self).__init__()
        self.fc1 = Linear(input_size, hidden_size)
        self.fc2 = Linear(hidden_size, output_size)
        self.dropout = nn.Dropout(p=0.6)
        
        self.saved_log_probs =[]# 记录每一步的动作概率
        self.rewards =[]#记录每一步的rdefforward(self, x):
        x = self.fc1(x)
        x = self.dropout(x)
        x = F.relu(x)
        x = self.fc2(x)
        out = F.softmax(x, dim=1)return out

defchoose_action(state, policy):
    state = torch.from_numpy(state).float().unsqueeze(0)# 在索引0对应位置增加一个维度
    probs = policy(state) 
    m = Categorical(probs)#创建以参数probs为标准的类别分布,之后的m.sampe就会按此概率选择动作
    action = m.sample()
    policy.saved_log_probs.append(m.log_prob(action))return action.item()#返回的就是intdeflearn(policy, optimizer):
    R =0
    policy_loss =[]
    returns =[]for r in policy.rewards[::-1]:
        R = r + gamma*R
        returns.insert(0,R)#从头部插入,即反着插入
    returns = torch.tensor(returns)# 归一化(均值方差),eps是一个非常小的数,避免除数为0
    eps = np.finfo(np.float64).eps.item()
    returns =(returns - returns.mean())/(returns.std()+ eps)for log_prob, R inzip(policy.saved_log_probs, returns):
        policy_loss.append(-log_prob*R)

    optimizer.zero_grad()
    policy_loss = torch.cat(policy_loss).sum()
    policy_loss.backward()
    optimizer.step()del policy.rewards[:]# 清空数据del policy.saved_log_probs[:]deftrain(episode_num):
    env = gym.make('CartPole-v1')
    env.seed(1)
    torch.manual_seed(1)
    policy = PGPolicy()# policy.load_state_dict(torch.load('save_model.pt'))  # 模型导入
    optimizer = optim.Adam(policy.parameters(), lr)
    average_r =0for i inrange(1, episode_num+1):#采这么多轨迹
        obs = env.reset()
        ep_r =0for t inrange(1,10000):
            action = choose_action(obs, policy)
            obs, reward, done, _ = env.step(action)
            policy.rewards.append(reward)
            ep_r += reward
            if done:break
        average_r =0.05* ep_r +(1-0.05)* average_r
        learn(policy, optimizer)if i %10==0:print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.format(i, ep_r, average_r))

    torch.save(policy.state_dict(),'PGPolicy.pt')deftest():
    env = gym.make('CartPole-v1')
    env.seed(1)
    torch.manual_seed(1)
    policy = PGPolicy()
    policy.load_state_dict(torch.load('PGPolicy.pt'))# 模型导入
    average_r =0with torch.no_grad():
        obs = env.reset()
        ep_r =0for t inrange(1,10000):
            action = choose_action(obs, policy)
            obs, reward, done, _ = env.step(action)
            policy.rewards.append(reward)
            env.render()
            time.sleep(0.1)
            ep_r += reward
            if done:break

train(1000)#  test()

3.4 演示效果

训练过程:

在这里插入图片描述

在这里插入图片描述

四、PPO (飞船降落)

4.1 LunarLander-v2环境介绍

(该环境需要安装box2d)

https://www.gymlibrary.dev/environments/box2d/lunar_lander/?highlight=lunarlander

在这里插入图片描述

  • **observation (1,8)**NumObservation0x1y2 V x V_x Vx​3 V y V_y Vy​4 a n g l e angle angle5 a n g u l a r v e l o c i t y angular \quad velocity angularvelocity6左腿是否触地(bool)7右腿是否触地(bool)
  • **action (1,4)**NumAction0啥也不干1左侧点火2下面(主发动机)点火3右侧点火
  • reward从屏幕顶部移动到着陆台的奖励约为100-140分。如果着陆器没降落到陆台,它将失去奖励。如果着陆器坠毁,它将获得额外的-100分。如果它成功降落,它将获得额外的+100分。接地的每个支腿为+10点。每架主机点火-0.3分。侧面发动机每帧点火-0.03分。解决的是200分。
  • 终止条件- 飞船与月球接触- 飞船|x|>1

4.2 PPO-Clip算法流程

初始化策略函数的参数

       θ 
      
     
       0 
      
     
    
   
     \theta_0 
    
   
 θ0​, 初始化价值函数的参数 
  
   
    
     
     
       ϕ 
      
     
       0 
      
     
    
   
     \phi_0 
    
   
 ϕ0​

for k = 0,1,2,…

基于

       π 
      
     
       ( 
      
      
      
        θ 
       
      
        k 
       
      
     
       ) 
      
     
    
      \pi(\theta_k) 
     
    
  π(θk​)来采集轨迹组 
   
    
     
      
      
        D 
       
      
        k 
       
      
     
       = 
      
      
      
        τ 
       
      
        k 
       
      
     
    
      D_k={\tau_k} 
     
    
  Dk​=τk​

计算

        R 
       
      
        t 
       
      
     
    
      R_t 
     
    
  Rt​

计算

        A 
       
      
        t 
       
      
     
    
      A_t 
     
    
  At​

更新策略:

        θ 
       
       
       
         k 
        
       
         + 
        
       
         1 
        
       
      
     
       = 
      
      
       
        
        
          a 
         
        
          r 
         
        
          g 
         
        
          m 
         
        
          a 
         
        
          x 
         
        
       
         θ 
        
       
      
      
      
        1 
       
       
       
         ∣ 
        
        
        
          D 
         
        
          k 
         
        
       
         ∣ 
        
       
         T 
        
       
      
      
       
        
        
          ∑ 
         
        
       
         τ 
        
       
      
      
       
        
        
          ∑ 
         
        
       
         t 
        
       
      
     
       m 
      
     
       i 
      
     
       n 
      
     
       ( 
      
      
       
        
        
          π 
         
        
          θ 
         
        
       
         ( 
        
        
        
          a 
         
        
          t 
         
        
       
         ∣ 
        
        
        
          s 
         
        
          t 
         
        
       
         ) 
        
       
       
        
        
          π 
         
         
         
           θ 
          
          
           
          
            ′ 
           
          
         
        
       
         ( 
        
        
        
          a 
         
        
          t 
         
        
       
         ∣ 
        
        
        
          s 
         
        
          t 
         
        
       
         ) 
        
       
      
     
       A 
      
     
       ( 
      
      
      
        s 
       
      
        t 
       
      
     
       , 
      
      
      
        a 
       
      
        t 
       
      
     
       ) 
      
     
       , 
      
      
     
       g 
      
     
       ( 
      
     
       ϵ 
      
     
       , 
      
     
       A 
      
     
       ( 
      
      
      
        s 
       
      
        t 
       
      
     
       , 
      
      
      
        a 
       
      
        t 
       
      
     
       ) 
      
     
       ) 
      
     
       ) 
      
     
    
      \theta_{k+1}=\underset{\theta}{argmax}\frac{1}{|D_k|T}\underset{\tau }{\sum}\underset{t }{\sum} min(\frac{\pi_\theta(a_t|s_t)}{\pi_{\theta^{'}}(a_t|s_t)}A(s_t,a_t),\quad g(\epsilon,A(s_t,a_t))) 
     
    
  θk+1​=θargmax​∣Dk​∣T1​τ∑​t∑​min(πθ′​(at​∣st​)πθ​(at​∣st​)​A(st​,at​),g(ϵ,A(st​,at​)))

更新价值函数:

        ϕ 
       
       
       
         k 
        
       
         + 
        
       
         1 
        
       
      
     
       = 
      
      
       
        
        
          a 
         
        
          r 
         
        
          g 
         
        
          m 
         
        
          i 
         
        
          n 
         
        
       
         ϕ 
        
       
      
      
      
        1 
       
       
       
         ∣ 
        
        
        
          D 
         
        
          k 
         
        
       
         ∣ 
        
       
         T 
        
       
      
      
       
        
        
          ∑ 
         
        
       
         τ 
        
       
      
      
       
        
        
          ∑ 
         
        
       
         t 
        
       
      
     
       ( 
      
     
       V 
      
     
       ( 
      
      
      
        s 
       
      
        t 
       
      
     
       ) 
      
     
       − 
      
     
       R 
      
      
      
        ) 
       
      
        2 
       
      
     
    
      \phi_{k+1}=\underset{\phi}{argmin}\frac{1}{|D_k|T}\underset{\tau }{\sum}\underset{t }{\sum} (V(s_t)-R)^2 
     
    
  ϕk+1​=ϕargmin​∣Dk​∣T1​τ∑​t∑​(V(st​)−R)2

4.3 具体代码

import torch
import torch.nn as nn
from torch.distributions import Categorical
import gym

device ='cpu'classMemory:def__init__(self):
        self.actions =[]
        self.states =[]
        self.logprobs =[]
        self.rewards =[]
        self.is_terminals =[]defclear_memory(self):del self.actions[:]del self.states[:]del self.logprobs[:]del self.rewards[:]del self.is_terminals[:]classActorCritic(nn.Module):def__init__(self, state_dim, action_dim, n_latent_var):super(ActorCritic, self).__init__()# actor
        self.action_layer = nn.Sequential(
                                nn.Linear(state_dim, n_latent_var),
                                nn.Tanh(),
                                nn.Linear(n_latent_var, n_latent_var),
                                nn.Tanh(),
                                nn.Linear(n_latent_var, action_dim),
                                nn.Softmax(dim=-1))# critic
        self.value_layer = nn.Sequential(
                nn.Linear(state_dim, n_latent_var),
                nn.Tanh(),
                nn.Linear(n_latent_var, n_latent_var),
                nn.Tanh(),
                nn.Linear(n_latent_var,1))defforward(self):# 如果这个方法没有被子类重写,但是调用了,就会报错raise NotImplementedError 
    defact(self, state, memory):
        state = torch.from_numpy(state).float().to(device) 
        action_probs = self.action_layer(state)
        dist = Categorical(action_probs)
        action = dist.sample()
        
        memory.states.append(state)
        memory.actions.append(action)
        memory.logprobs.append(dist.log_prob(action))return action.item()defevaluate(self, state, action):
        action_probs = self.action_layer(state)
        dist = Categorical(action_probs)
        
        action_logprobs = dist.log_prob(action)
        dist_entropy = dist.entropy()
        
        state_value = self.value_layer(state)return action_logprobs, torch.squeeze(state_value), dist_entropy

classPPO:def__init__(self, state_dim, action_dim, n_latent_var, lr, betas, gamma, K_epochs, eps_clip):
        self.lr = lr
        self.betas = betas
        self.gamma = gamma
        self.eps_clip = eps_clip
        self.K_epochs = K_epochs
        
        self.policy = ActorCritic(state_dim, action_dim, n_latent_var).to(device)
        self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=lr, betas=betas)
        self.policy_old = ActorCritic(state_dim, action_dim, n_latent_var).to(device)
        self.policy_old.load_state_dict(self.policy.state_dict())
        
        self.MseLoss = nn.MSELoss()defupdate(self, memory):# Monte Carlo estimate of state rewards:
        rewards =[]
        discounted_reward =0for reward, is_terminal inzip(reversed(memory.rewards),reversed(memory.is_terminals)):if is_terminal:
                discounted_reward =0
            discounted_reward = reward +(self.gamma * discounted_reward)
            rewards.insert(0, discounted_reward)# Normalizing the rewards:
        rewards = torch.tensor(rewards).to(device).to(torch.float32)
        rewards =(rewards - rewards.mean())/(rewards.std()+1e-5)# convert list to tensor
        old_states = torch.stack(memory.states).to(device).detach().to(torch.float32)
        old_actions = torch.stack(memory.actions).to(device).detach().to(torch.float32)
        old_logprobs = torch.stack(memory.logprobs).to(device).detach().to(torch.float32)# Optimize policy for K epochs:for _ inrange(self.K_epochs):# Evaluating old actions and values :
            logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions)# Finding the ratio (pi_theta / pi_theta__old):
            ratios = torch.exp(logprobs - old_logprobs.detach())# Finding Surrogate Loss:
            advantages = rewards - state_values.detach()
            surr1 = ratios * advantages
            surr2 = torch.clamp(ratios,1-self.eps_clip,1+self.eps_clip)* advantages
            loss =-torch.min(surr1, surr2)+0.5*self.MseLoss(state_values, rewards)-0.01*dist_entropy
            loss =loss.to(torch.float32)# take gradient step
            self.optimizer.zero_grad()
            loss.mean().backward()
            self.optimizer.step()# Copy new weights into old policy:
        self.policy_old.load_state_dict(self.policy.state_dict())defmain():############## Hyperparameters ##############
    env_name ='LunarLander-v2'# "LunarLander-v2"# creating environment
    env = gym.make(env_name)
    env = env.unwrapped
    state_dim = env.observation_space.shape[0]
    action_dim =4
    render =False
    solved_reward =200# stop training if avg_reward > solved_reward
    log_interval =20# print avg reward in the interval
    max_episodes =5000# max training episodes
    max_timesteps =1000# max timesteps in one episode
    n_latent_var =64# number of variables in hidden layer
    update_timestep =2000# update policy every n timesteps
    lr =0.002
    betas =(0.9,0.999)
    gamma =0.99# discount factor
    K_epochs =4# update policy using 1 trajectory for K epochs
    eps_clip =0.2# clip parameter for PPO
    random_seed =123#############################################if random_seed:
        torch.manual_seed(random_seed)
        env.seed(random_seed)
    
    memory = Memory()
    ppo = PPO(state_dim, action_dim, n_latent_var, lr, betas, gamma, K_epochs, eps_clip)print(lr,betas)# logging variables
    running_reward =0
    avg_length =0
    timestep =0# training loopfor i_episode inrange(1, max_episodes+1):
        state = env.reset()for t inrange(max_timesteps):
            timestep +=1# Running policy_old:
            action = ppo.policy_old.act(state, memory)
            state, reward, done, _ = env.step(action)# Saving reward and is_terminal:
            memory.rewards.append(reward)
            memory.is_terminals.append(done)# update if its timeif timestep % update_timestep ==0:
                ppo.update(memory)
                memory.clear_memory()
                timestep =0
            
            running_reward += reward
            if render:
                env.render()if done:break
                
        avg_length += t
        
        # stop training if avg_reward > solved_rewardif running_reward >(log_interval*solved_reward):print("########## Solved! ##########")
            torch.save(ppo.policy.state_dict(),'./PPO_{}_{}.pth'.format(env_name,lr))break# loggingif i_episode % log_interval ==0:
            avg_length =int(avg_length/log_interval)
            running_reward =int((running_reward/log_interval))print('Episode {} \t avg length: {} \t reward: {}'.format(i_episode, avg_length, running_reward))
            running_reward =0
            avg_length =0if i_episode %2000==0:
            torch.save(ppo.policy.state_dict(),'./PPO_{}_{}.pth'.format(env_name,lr))deftest():############## Hyperparameters ##############
    env_name ="LunarLander-v2"# creating environment
    env = gym.make(env_name)
    state_dim = env.observation_space.shape[0]
    action_dim =4
    render =False
    max_timesteps =500
    n_latent_var =64# number of variables in hidden layer
    lr =0.0002
    betas =(0.9,0.999)
    gamma =0.99# discount factor
    K_epochs =4# update policy for K epochs
    eps_clip =0.2# clip parameter for PPO#############################################

    n_episodes =3
    max_timesteps =300
    render =True
    save_gif =False

    filename ="PPO_{}_0.002.pth".format(env_name)
    directory ="./"
    
    memory = Memory()
    ppo = PPO(state_dim, action_dim, n_latent_var, lr, betas, gamma, K_epochs, eps_clip)
    
    ppo.policy_old.load_state_dict(torch.load(directory+filename))for ep inrange(1, n_episodes+1):
        ep_reward =0
        state = env.reset()for t inrange(max_timesteps):
            action = ppo.policy_old.act(state, memory)
            state, reward, done, _ = env.step(action)
            ep_reward += reward
            if render:
                env.render()if done:breakprint('Episode: {}\tReward: {}'.format(ep,int(ep_reward)))
        ep_reward =0
        env.close()if __name__ =='__main__':
    main()# test()

4.4 演示效果

在这里插入图片描述
在这里插入图片描述

五、DQN (打砖块)

5.1 Breakout-v0环境介绍

Breakout - Gym Documentation (gymlibrary.dev)

在这里插入图片描述

  • observation (210,160,3)

在这里插入图片描述

  • action (1,4)NumAction0NOOP1FIRE2RIGHT3LEFT
  • reward在这里插入图片描述

5.2 DQN算法流程

(带有经验回放池的DQN)

初始化经验回放池

      D 
     
    
   
     D 
    
   
 D(容量为 
  
   
    
    
      N 
     
    
   
     N 
    
   
 N)

随机初始化 动作-价值 函数

      Q 
     
    
   
     Q 
    
   
 Q

for (each episode)

初始化序列

        s 
       
      
        1 
       
      
     
       = 
      
     
       [ 
      
      
      
        x 
       
      
        1 
       
      
     
       ] 
      
     
    
      s_1=[x_1] 
     
    
  s1​=[x1​],预处理 
   
    
     
      
      
        ϕ 
       
      
        1 
       
      
     
       = 
      
     
       ϕ 
      
     
       ( 
      
      
      
        s 
       
      
        1 
       
      
     
       ) 
      
     
    
      \phi_1=\phi(s_1) 
     
    
  ϕ1​=ϕ(s1​)

for (each step)

         a 
        
       
         t 
        
       
      
        = 
       
       
        
         
         
           m 
          
         
           a 
          
         
           x 
          
         
        
          a 
         
        
       
       
       
         Q 
        
       
         ∗ 
        
       
      
        ( 
       
      
        ϕ 
       
      
        ( 
       
       
       
         s 
        
       
         t 
        
       
      
        ) 
       
      
        , 
       
      
        a 
       
      
        : 
       
      
        θ 
       
      
        ) 
       
      
     
       a_t=\underset{a}{max}Q^*(\phi(s_t),a:\theta) 
      
     
   at​=amax​Q∗(ϕ(st​),a:θ) (概率=1- 
    
     
      
      
        ϵ 
       
      
     
       \epsilon 
      
     
   ϵ)

执行

         a 
        
       
         t 
        
       
      
     
       a_t 
      
     
   at​,得到 
    
     
      
       
       
         r 
        
       
         t 
        
       
      
     
       r_t 
      
     
   rt​和图片 
    
     
      
       
       
         x 
        
        
        
          t 
         
        
          + 
         
        
          1 
         
        
       
      
     
       x_{t+1} 
      
     
   xt+1​


    
     
      
       
       
         s 
        
        
        
          t 
         
        
          + 
         
        
          1 
         
        
       
      
        = 
       
       
       
         s 
        
       
         t 
        
       
      
        , 
       
       
       
         ϕ 
        
        
        
          t 
         
        
          + 
         
        
          1 
         
        
       
      
        = 
       
      
        ϕ 
       
      
        ( 
       
       
       
         s 
        
        
        
          t 
         
        
          + 
         
        
          1 
         
        
       
      
        ) 
       
      
     
       s_{t+1}=s_t,\phi_{t+1}=\phi(s_{t+1}) 
      
     
   st+1​=st​,ϕt+1​=ϕ(st+1​)

        ( 
       
       
       
         ϕ 
        
       
         t 
        
       
      
        , 
       
       
       
         a 
        
       
         t 
        
       
      
        , 
       
       
       
         r 
        
       
         t 
        
       
      
        , 
       
       
       
         ϕ 
        
        
        
          t 
         
        
          + 
         
        
          1 
         
        
       
      
        ) 
       
      
     
       (\phi_t,a_t,r_t,\phi_{t+1}) 
      
     
   (ϕt​,at​,rt​,ϕt+1​)存储进 
    
     
      
      
        D 
       
      
     
       D 
      
     
   D

        D 
       
      
     
       D 
      
     
   D中采样


    
     
      
       
       
         y 
        
       
         i 
        
       
      
        = 
       
       
       
         { 
        
        
         
          
           
            
            
              r 
             
            
              j 
             
            
           
          
          
           
            
            
              ( 
             
            
              t 
             
            
              e 
             
            
              r 
             
            
              m 
             
            
              i 
             
            
              n 
             
            
              a 
             
            
              l 
             
             
             
             
               ϕ 
              
              
              
                j 
               
              
                + 
               
              
                1 
               
              
             
            
              ) 
             
            
           
          
         
         
          
           
            
             
             
               r 
              
             
               j 
              
             
            
              + 
             
            
              γ 
             
            
              m 
             
            
              a 
             
            
              x 
             
            
              Q 
             
            
              ( 
             
             
             
               ϕ 
              
              
              
                j 
               
              
                + 
               
              
                1 
               
              
             
            
              , 
             
             
             
               a 
              
              
               
              
                ′ 
               
              
             
            
              ; 
             
            
              θ 
             
            
              ) 
             
            
           
          
          
           
            
            
              ( 
             
            
              n 
             
            
              o 
             
            
              n 
             
            
              − 
             
            
              t 
             
            
              e 
             
            
              r 
             
            
              m 
             
            
              i 
             
            
              n 
             
            
              a 
             
            
              l 
             
             
             
             
               ϕ 
              
              
              
                j 
               
              
                + 
               
              
                1 
               
              
             
            
              ) 
             
            
           
          
         
        
       
      
     
       y_i = \left\{\begin{matrix} r_j & (terminal\quad \phi_{j+1})\\ r_j +\gamma max Q( \phi_{j+1},a^{'}; \theta) & (non-terminal\quad \phi_{j+1}) \end{matrix}\right. 
      
     
   yi​={rj​rj​+γmaxQ(ϕj+1​,a′;θ)​(terminalϕj+1​)(non−terminalϕj+1​)​

根据

        ( 
       
       
       
         y 
        
       
         i 
        
       
      
        − 
       
      
        Q 
       
      
        ( 
       
       
       
         ϕ 
        
       
         j 
        
       
      
        , 
       
       
       
         a 
        
       
         j 
        
       
      
        : 
       
      
        θ 
       
      
        ) 
       
       
       
         ) 
        
       
         2 
        
       
      
     
       (y_i-Q(\phi_j,a_j:\theta))^2 
      
     
   (yi​−Q(ϕj​,aj​:θ))2进行梯度下降

5.3 具体代码

import gym
import cv2
import torch
import numpy as np
import torch.nn as nn
import pandas as pd
from torch.nn import Linear, Conv2d, ReLU
import PIL.Image as Image

device=torch.device("cuda:0"if torch.cuda.is_available()else"cpu")# 经验池classDQBReplayer:def__init__(self, capacity):# (S,A,R,S)
        self.memory = pd.DataFrame(index=range(capacity), columns=['observation','action','reward','next_observation','done'])
        self.i =0
        self.count =0
        self.capacity = capacity
    defstore(self,*args):
        self.memory.loc[self.i]= args
        self.i =(self.i +1)%self.capacity
        self.count =min(self.count+1, self.capacity)defsample(self, size):
        indics = np.random.choice(self.count, size=size)return(np.stack(self.memory.loc[indics,field])for field in self.memory.columns)# Q-NetworkclassDQN_net(nn.Module):def__init__(self):super(DQN_net, self).__init__()
        self.conv = nn.Sequential(
            Conv2d(in_channels=4, out_channels=32, kernel_size=8, stride=4),
            ReLU(),
            Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
            ReLU(),
            Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
            ReLU())
        self.classifier = nn.Sequential(
            Linear(3136,512),
            ReLU(),
            Linear(512,4))defforward(self, x):
        x = self.conv(x)
        x = x.view(x.size(0),-1)
        output = self.classifier(x)return output
    
classDQN(nn.Module):def__init__(self, input_shape, env):super(DQN, self).__init__()
        self.replayer_start_size =100000
        self.upon_times =20
        self.replayer = DQBReplayer(capacity=self.replayer_start_size)
        self.action_n = env.action_space.n
        self.image_stack = input_shape[2]
        self.gamma =0.99
        self.image_shape =(input_shape[0], input_shape[1])
        self.e_net = DQN_net()
        self.t_net = DQN_net()

        self.learn_step =0
        self.max_learn_step =650000
        self.epsilon =1.
        self.start_learn =Falsedefget_next_state(self,state=None,observation=None):
        img=Image.fromarray(observation,"RGB")
        img=img.resize(self.image_shape).convert('L')
        img=np.asarray(img.getdata(),dtype=np.uint8,).reshape(img.size[1],img.size[0])if state isNone:
            next_state = np.array([img,]*self.image_stack)else:
            next_state = np.append(state[1:],[img,],axis=0)return next_state
    defdecide(self,state,step):if self.start_learn ==False:#前50000步随机选择
            action = np.random.randint(0,4)return action
        else:
            self.epsilon -=0.0000053if step <30:#每局前三十步随机选择,中间30万,#以一定概率(1-epsilon)通过神经网络选择,# 最后30万次以0.99概率通过神经网络选择
            action = np.random.randint(0,4)elif np.random.random()<max(self.epsilon,0.0005):
            action = np.random.randint(0,4)else:
            state = state/128-1
            y = torch.Tensor(state).float().unsqueeze(0)
            y = y.to(device)
            x = self.e_net(y).detach()if self.learn_step%2000==0:print("q value{}".format(x))
            action = torch.argmax(x).data.item()return action
    
defmain():
    sum_reward =0
    store_count =0
    env = gym.make('Breakout-v0')
    net = DQN([84,84,4], env).cuda()
    
    Load_Net =0if Load_Net==1:
        load_net_path ='./epsiode_2575_reward_10.0.pkl'print("Load old net and the path is:",load_net_path)
        net.e_net = torch.load(load_net_path)
        net.t_net = torch.load(load_net_path)
    max_score =0
    mse = nn.MSELoss()
    mse = mse.cuda()
    opt = torch.optim.RMSprop(net.e_net.parameters(), lr=0.0015)for i inrange(20000):
        lives =5
        obs = env.reset()
        state = net.get_next_state(None,obs)
        epoch_reward =0if i%100==0:print("{} times_game".format(i),end=':')print('epoch_reward:{}'.format(epoch_reward))for step inrange(500000):
            action = net.decide(state,step=step)
            obs, reward, done, _ = env.step(action)
            next_state = net.get_next_state(state, obs) 
            epoch_reward += reward
            net.replayer.store(state, action, reward, next_state, done)
            net.learn_step +=1if net.learn_step >= net.replayer_start_size //2and net.learn_step %4==0:if net.start_learn ==False:
                    net.start_learn =Trueprint('Start Learn!')
                sample_n =32
                states, actions, rewards, next_states, dones = net.replayer.sample(sample_n)
                states, next_states = states /128-1, next_states /128-1
                rewards = torch.Tensor(np.clip(rewards,-1,1)).unsqueeze(1).cuda()
                states, next_states = torch.Tensor(states).cuda(), torch.Tensor(next_states).cuda()
                actions = torch.Tensor(actions).long().unsqueeze(1).cuda()
                dones = torch.Tensor(dones).unsqueeze(1).cuda()
                q = net.e_net(states).gather(1, actions)
                q_next = net.t_net(next_states).detach().max(1)[0].reshape(sample_n,1)
                tq = rewards + net.gamma *(1-done)* q_next
                loss = mse(q, tq)
                opt.zero_grad()
                loss.backward()
                opt.step()if net.learn_step %(net.upon_times *5)==0:
                    net.t_net.load_state_dict(net.e_net.state_dict())if net.learn_step %100==0:
                    loss_record = loss.item()
                    a_r = torch.mean(rewards,0).item()
                
            state = next_state
            
            if done:
                save_net_path ='./'
                sum_reward+=epoch_reward
                if epoch_reward > max_score:
                    name ="epsiode_"+str(net.learn_step)+"_reward_"+str(epoch_reward)+".pkl"
                    torch.save(net.e_net, save_net_path+name)
                    max_score = epoch_reward
                elif i %1000==0:
                    name ="No."+str(i)+".pkl"
                    torch.save(net.e_net, save_net_path + name)if i%10==0:
                    sum_reward=0breakimport cv2

defPictureArray2Video(pic_list, path='./test.mp4'):
    h,w,_ = pic_list[0].shape[0], pic_list[0].shape[1], pic_list[0].shape[2]print(h,w)
    writer = cv2.VideoWriter(path, cv2.VideoWriter_fourcc('m','p','4','v'),10,(w, h),True)
    total_frame =len(pic_list)for i inrange(total_frame):
        writer.write(pic_list[i])
    writer.release()deftest():
    pics =[]
    sum_reward =0
    store_count =0
    env = gym.make('Breakout-v0')
    net = DQN([84,84,4], env).cuda()
    
    Load_Net =1if Load_Net==1:
        load_net_path ='./epsiode_10219_reward_9.0.pkl'print("Load old net and the path is:",load_net_path)
        net.e_net = torch.load(load_net_path)
        net.t_net = torch.load(load_net_path)
    max_score =0
    mse = nn.MSELoss()
    mse = mse.cuda()
    

    obs = env.reset()
    state = net.get_next_state(None,obs)
    epoch_reward =0for step inrange(500000):
        action = net.decide(state,step=step)
        obs, reward, done, _ = env.step(action)
        pic = env.render(mode='rgb_array')
        pic = cv2.cvtColor(pic,cv2.COLOR_BGR2RGB)
        next_state = net.get_next_state(state, obs) 
        pics.append(pic)if done:
            PictureArray2Video(pics)break

5.4 演示效果

这个我感觉要训练好久,我训练了两个小时,reward=11,然后停下了。

在这里插入图片描述

六、DDPG (单摆)

6.1 Pendulum-v1环境介绍

https://www.gymlibrary.dev/environments/classic_control/pendulum/?highlight=pendulum+v1

  • observation (1,3)NumObservationMinMax0cos(theta)-111sin(angle)-112角速度-8.08.0
  • action (1,)力矩,大小在(-2,2)之前的值
  • 奖励 r = − ( θ 2 + 0.1 × ω 2 + 0.001 × 力 矩 2 ) r = -(\theta^2 + 0.1×\omega^2 + 0.001×力矩^2) r=−(θ2+0.1×ω2+0.001×力矩2)

6.2 DDPG算法流程

随机初始化 评论员

      Q 
     
    
      ( 
     
    
      s 
     
    
      , 
     
    
      a 
     
    
      ∣ 
     
     
     
       θ 
      
     
       Q 
      
     
    
      ) 
     
    
   
     Q(s,a|\theta^Q) 
    
   
 Q(s,a∣θQ)和 演员 
  
   
    
    
      μ 
     
    
      ( 
     
    
      s 
     
    
      ∣ 
     
     
     
       θ 
      
     
       μ 
      
     
    
      ) 
     
    
   
     \mu(s|\theta^\mu) 
    
   
 μ(s∣θμ)

初始化目标策略价值网络

      Q 
     
     
      
     
       ′ 
      
     
    
   
     Q{'} 
    
   
 Q′和 
  
   
    
     
     
       θ 
      
      
       
      
        ′ 
       
      
     
    
   
     \theta^{'} 
    
   
 θ′,

  
   
    
     
     
       θ 
      
      
      
        Q 
       
       
        
       
         ′ 
        
       
      
     
    
      = 
     
     
     
       θ 
      
     
       Q 
      
     
    
      , 
     
     
     
       θ 
      
      
      
        μ 
       
       
        
       
         ′ 
        
       
      
     
    
      = 
     
     
     
       θ 
      
     
       μ 
      
     
    
   
     \theta^{Q^{'}}=\theta^Q,\theta^{\mu^{'}}=\theta^\mu 
    
   
 θQ′=θQ,θμ′=θμ

初始化经验回放池R

for (each episode)

for (each step)

         a 
        
       
         t 
        
       
      
        = 
       
      
        μ 
       
      
        ( 
       
       
       
         s 
        
       
         t 
        
       
      
        ∣ 
       
       
       
         θ 
        
       
         μ 
        
       
      
        ) 
       
      
     
       a_t=\mu(s_t|\theta^{\mu}) 
      
     
   at​=μ(st​∣θμ)


    
     
      
       
       
         s 
        
        
        
          t 
         
        
          + 
         
        
          1 
         
        
       
      
        , 
       
       
       
         r 
        
       
         t 
        
       
      
        , 
       
      
        d 
       
      
        o 
       
      
        n 
       
      
        e 
       
       
       
         , 
        
       
         = 
        
       
      
        e 
       
      
        n 
       
      
        v 
       
      
        . 
       
      
        s 
       
      
        t 
       
      
        e 
       
      
        p 
       
      
        ( 
       
       
       
         a 
        
       
         t 
        
       
      
        ) 
       
      
     
       s_{t+1},r_t,done,_ = env.step(a_t) 
      
     
   st+1​,rt​,done,=​env.step(at​)

        ( 
       
       
       
         s 
        
       
         t 
        
       
      
        , 
       
       
       
         a 
        
       
         t 
        
       
      
        , 
       
       
       
         r 
        
       
         t 
        
       
      
        , 
       
       
       
         s 
        
        
        
          t 
         
        
          + 
         
        
          1 
         
        
       
      
        ) 
       
      
     
       (s_t,a_t,r_t,s_{t+1}) 
      
     
   (st​,at​,rt​,st+1​)存储进*R*

从R中采样N条轨迹

        ( 
       
       
       
         s 
        
       
         i 
        
       
      
        , 
       
       
       
         a 
        
       
         i 
        
       
      
        , 
       
       
       
         r 
        
       
         i 
        
       
      
        , 
       
       
       
         s 
        
        
        
          i 
         
        
          + 
         
        
          1 
         
        
       
      
        ) 
       
      
     
       (s_i,a_i,r_i,s_{i+1}) 
      
     
   (si​,ai​,ri​,si+1​)


    
     
      
       
       
         y 
        
       
         i 
        
       
      
        = 
       
       
       
         r 
        
       
         i 
        
       
      
        + 
       
      
        γ 
       
       
       
         Q 
        
        
         
        
          ′ 
         
        
       
      
        ( 
       
       
       
         s 
        
        
        
          i 
         
        
          + 
         
        
          1 
         
        
       
      
        , 
       
       
       
         μ 
        
        
         
        
          ′ 
         
        
       
      
        ( 
       
       
       
         s 
        
        
        
          i 
         
        
          + 
         
        
          1 
         
        
       
      
        ∣ 
       
       
       
         θ 
        
        
        
          Q 
         
         
          
         
           ′ 
          
         
        
       
      
        ) 
       
      
        ∣ 
       
       
       
         θ 
        
        
        
          Q 
         
         
          
         
           ′ 
          
         
        
       
      
        ) 
       
      
     
       y_i = r_i + \gamma Q^{'}(s_{i+1},\mu^{'}(s_{i+1}|\theta^{Q^{'}})|\theta^{Q^{'}}) 
      
     
   yi​=ri​+γQ′(si+1​,μ′(si+1​∣θQ′)∣θQ′)


    
     
      
      
        L 
       
      
        o 
       
      
        s 
       
      
        s 
       
      
        = 
       
       
       
         1 
        
       
         N 
        
       
      
        Σ 
       
      
        ( 
       
       
       
         y 
        
       
         i 
        
       
      
        − 
       
      
        Q 
       
      
        ( 
       
       
       
         s 
        
       
         i 
        
       
      
        , 
       
       
       
         a 
        
       
         i 
        
       
      
        ∣ 
       
       
       
         θ 
        
       
         Q 
        
       
      
        ) 
       
       
       
         ) 
        
       
         2 
        
       
      
     
       Loss = \frac{1}{N}\Sigma(y_i-Q(s_i,a_i|\theta^{Q}))^2 
      
     
   Loss=N1​Σ(yi​−Q(si​,ai​∣θQ))2, 更新评论员网络


    
     
      
       
       
         ▽ 
        
        
        
          θ 
         
        
          μ 
         
        
       
      
        J 
       
      
        = 
       
       
       
         1 
        
       
         N 
        
       
      
        Σ 
       
       
       
         ▽ 
        
       
         a 
        
       
      
        Q 
       
      
        ( 
       
      
        s 
       
      
        , 
       
      
        a 
       
      
        ∣ 
       
       
       
         θ 
        
       
         Q 
        
       
      
        ) 
       
       
       
         ∣ 
        
        
        
          s 
         
        
          = 
         
         
         
           s 
          
         
           i 
          
         
        
          , 
         
        
          a 
         
        
          = 
         
        
          μ 
         
        
          ( 
         
         
         
           s 
          
         
           i 
          
         
        
          ) 
         
        
       
       
       
         ▽ 
        
        
        
          θ 
         
        
          μ 
         
        
       
      
        μ 
       
      
        ( 
       
      
        s 
       
      
        ∣ 
       
       
       
         θ 
        
       
         μ 
        
       
      
        ) 
       
      
        ∣ 
       
       
       
         ) 
        
        
        
          s 
         
        
          i 
         
        
       
      
     
       \bigtriangledown _{\theta^\mu}J = \frac{1}{N}\Sigma \bigtriangledown_a Q(s,a|\theta^Q)|_{s=s_i,a=\mu(s_i)}\bigtriangledown_{\theta^\mu} \mu(s|\theta^\mu)|)_{s_i} 
      
     
   ▽θμ​J=N1​Σ▽a​Q(s,a∣θQ)∣s=si​,a=μ(si​)​▽θμ​μ(s∣θμ)∣)si​​

更新目标网络:

         θ 
        
        
        
          Q 
         
         
          
         
           ′ 
          
         
        
       
      
        = 
       
      
        τ 
       
       
       
         θ 
        
       
         Q 
        
       
      
        + 
       
      
        ( 
       
      
        1 
       
      
        − 
       
      
        τ 
       
      
        ) 
       
       
       
         θ 
        
        
        
          Q 
         
         
          
         
           ′ 
          
         
        
       
      
     
       \theta^{Q^{'}} = \tau \theta^Q + (1-\tau)\theta^{Q^{'}} 
      
     
   θQ′=τθQ+(1−τ)θQ′


    
     
      
       
       
         θ 
        
        
        
          μ 
         
         
          
         
           ′ 
          
         
        
       
      
        = 
       
      
        τ 
       
       
       
         θ 
        
       
         μ 
        
       
      
        + 
       
      
        ( 
       
      
        1 
       
      
        − 
       
      
        τ 
       
      
        ) 
       
       
       
         θ 
        
        
        
          μ 
         
         
          
         
           ′ 
          
         
        
       
      
     
       \theta^{\mu^{'}} = \tau \theta^\mu + (1-\tau)\theta^{\mu^{'}} 
      
     
   θμ′=τθμ+(1−τ)θμ′

6.3 具体代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import gym
import time

#####################  hyper parameters  ####################
EPISODES =200
EP_STEPS =200
LR_ACTOR =0.001
LR_CRITIC =0.002
GAMMA =0.9
TAU =0.01
MEMORY_CAPACITY =10000
BATCH_SIZE =32
RENDER =False
ENV_NAME ='Pendulum-v1'########################## DDPG Framework ######################classActorNet(nn.Module):# define the network structure for actor and criticdef__init__(self, s_dim, a_dim):super(ActorNet, self).__init__()
        self.fc1 = nn.Linear(s_dim,30)
        self.fc1.weight.data.normal_(0,0.1)# initialization of FC1
        self.out = nn.Linear(30, a_dim)
        self.out.weight.data.normal_(0,0.1)# initilizaiton of OUTdefforward(self, x):
        x = self.fc1(x)
        x = F.relu(x)
        x = self.out(x)
        x = torch.tanh(x)
        actions = x *2# for the game "Pendulum-v0", action range is [-2, 2]return actions

classCriticNet(nn.Module):def__init__(self, s_dim, a_dim):super(CriticNet, self).__init__()
        self.fcs = nn.Linear(s_dim,30)
        self.fcs.weight.data.normal_(0,0.1)
        self.fca = nn.Linear(a_dim,30)
        self.fca.weight.data.normal_(0,0.1)
        self.out = nn.Linear(30,1)
        self.out.weight.data.normal_(0,0.1)defforward(self, s, a):
        x = self.fcs(s)
        y = self.fca(a)
        actions_value = self.out(F.relu(x+y))return actions_value
    
classDDPG(object):def__init__(self, a_dim, s_dim, a_bound):
        self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound
        self.memory = np.zeros((MEMORY_CAPACITY, s_dim *2+ a_dim +1), dtype=np.float32)
        self.pointer =0# serves as updating the memory data # Create the 4 network objects
        self.actor_eval = ActorNet(s_dim, a_dim)
        self.actor_target = ActorNet(s_dim, a_dim)
        self.critic_eval = CriticNet(s_dim, a_dim)
        self.critic_target = CriticNet(s_dim, a_dim)# create 2 optimizers for actor and critic
        self.actor_optimizer = torch.optim.Adam(self.actor_eval.parameters(), lr=LR_ACTOR)
        self.critic_optimizer = torch.optim.Adam(self.critic_eval.parameters(), lr=LR_CRITIC)# Define the loss function for critic network update
        self.loss_func = nn.MSELoss()defstore_transition(self, s, a, r, s_):# how to store the episodic data to buffer
        transition = np.hstack((s, a,[r], s_))
        index = self.pointer % MEMORY_CAPACITY # replace the old data with new data 
        self.memory[index,:]= transition
        self.pointer +=1defchoose_action(self, s):# print(s)
        s = torch.unsqueeze(torch.FloatTensor(s),0)return self.actor_eval(s)[0].detach()deflearn(self):# softly update the target networksfor x in self.actor_target.state_dict().keys():eval('self.actor_target.'+ x +'.data.mul_((1-TAU))')eval('self.actor_target.'+ x +'.data.add_(TAU*self.actor_eval.'+ x +'.data)')for x in self.critic_target.state_dict().keys():eval('self.critic_target.'+ x +'.data.mul_((1-TAU))')eval('self.critic_target.'+ x +'.data.add_(TAU*self.critic_eval.'+ x +'.data)')# sample from buffer a mini-batch data
        indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
        batch_trans = self.memory[indices,:]# extract data from mini-batch of transitions including s, a, r, s_
        batch_s = torch.FloatTensor(batch_trans[:,:self.s_dim])
        batch_a = torch.FloatTensor(batch_trans[:, self.s_dim:self.s_dim + self.a_dim])
        batch_r = torch.FloatTensor(batch_trans[:,-self.s_dim -1:-self.s_dim])
        batch_s_ = torch.FloatTensor(batch_trans[:,-self.s_dim:])# make action and evaluate its action values
        a = self.actor_eval(batch_s)
        q = self.critic_eval(batch_s, a)
        actor_loss =-torch.mean(q)# optimize the loss of actor network
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()# compute the target Q value using the information of next state
        a_target = self.actor_target(batch_s_)
        q_tmp = self.critic_target(batch_s_, a_target)
        q_target = batch_r + GAMMA * q_tmp
        # compute the current q value and the loss
        q_eval = self.critic_eval(batch_s, batch_a)
        td_error = self.loss_func(q_target, q_eval)# optimize the loss of critic network
        self.critic_optimizer.zero_grad()
        td_error.backward()
        self.critic_optimizer.step()############################### Training ####################################### Define the env in gym
env = gym.make(ENV_NAME)
env = env.unwrapped
env.seed(1)
s_dim = env.observation_space.shape[0]
a_dim = env.action_space.shape[0]
a_bound = env.action_space.high
a_low_bound = env.action_space.low

ddpg = DDPG(a_dim, s_dim, a_bound)
var =3# the controller of exploration which will decay during training process
t1 = time.time()for i inrange(EPISODES):
    s = env.reset()
    ep_r =0for j inrange(EP_STEPS):if RENDER: env.render()# add explorative noise to action
        a = ddpg.choose_action(s)
        a = np.clip(np.random.normal(a, var), a_low_bound, a_bound)
        s_, r, done, info, _ = env.step(a)
        ddpg.store_transition(s, a, r /10, s_)# store the transition to memoryif ddpg.pointer > MEMORY_CAPACITY:
            var *=0.9995# decay the exploration controller factor
            ddpg.learn()
            
        s = s_
        ep_r += r
        if j == EP_STEPS -1:print('Episode: ', i,' Reward: %i'%(ep_r),'Explore: %.2f'% var)if ep_r >-300: RENDER =Truebreakprint('Running time: ', time.time()- t1)if __name__ =="__main__":
    learn()    
    env.close()

6.4 演示效果

在这里插入图片描述


本文转载自: https://blog.csdn.net/weixin_45696231/article/details/126723207
版权归原作者 Promethe_us 所有, 如有侵权,请联系我们删除。

“基础的强化学习(RL)算法及代码详细demo”的评论:

还没有评论