一、ollama安装下载
1、官方下载地址
2、修改模型的安装地址
Ollama的模型会占用较大的磁盘空间,默认会在C盘用户文件夹下的.ollama/models文件夹中,可以配置环境变量OLLAMA_MODELS,设置为指定的路径:
3、模型参考
下载命令:
# 电脑性能好的可以装一个高版本的,例如4b、7b等
ollama run qwen:0.5b
# 查看已安装的模型
ollama list
二、springAI的使用
1、环境准备
jdk17、springboot3.0+
2、添加依赖
这里贴出完整pom:
<?xml version="1.0" encoding="UTF-8"?><projectxmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.3.2</version><relativePath/><!-- lookup parent from repository --></parent><groupId>com.example</groupId><artifactId>ollamaTest</artifactId><version>0.0.1-SNAPSHOT</version><name>spring-ai-ollama</name><description>spring-ai-ollama</description><properties><java.version>17</java.version><!-- 快照版本--><spring-ai.version>1.0.0-SNAPSHOT</spring-ai.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><scope>runtime</scope><optional>true</optional></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency></dependencies><dependencyManagement><dependencies><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-bom</artifactId><version>${spring-ai.version}</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement><build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><configuration><excludes><exclude><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></exclude></excludes></configuration></plugin></plugins></build><!-- 快照版本--><repositories><repository><id>spring-snapshot</id><name>Spring Snapshots</name><url>https://repo.spring.io/snapshot</url><releases><enabled>false</enabled></releases></repository></repositories></project>
3、编写一个公共的调用组件
/**
* 存入上下文信息,并调用接口进行聊天
*/@ComponentpublicclassCompletion{@ResourceprivateOllamaChatModel aiClient;/**
* 最大消息记录数
*/privatefinalstaticIntegerMAX_SIZE=10;/**
* 消息记录
*/privateList<Message> messages =newArrayList<>();/**
* 初始化存入系统消息
*/@PostConstructprivatevoidaddSystemMessage(){String message ="李白(701年2月28日—762年12月),字太白,号青莲居士,出生于蜀郡绵州昌隆县(今四川省绵阳市江油市青莲镇),一说出生于西域碎叶 ,祖籍陇西成纪(今甘肃省秦安县)。唐朝伟大的浪漫主义诗人,凉武昭王李暠九世孙 。"+"为人爽朗大方,乐于交友,爱好饮酒作诗,名列“酒中八仙” 。曾经得到唐玄宗李隆基赏识,担任翰林供奉,赐金放还后,游历全国,先后迎娶宰相许圉师、宗楚客的孙女。唐肃宗李亨即位后,卷入永王之乱,流放夜郎,辗转到达当涂县令李阳冰家。上元二年,去世,时年六十二 。"+"著有《李太白集》,代表作有《望庐山瀑布》《行路难》《蜀道难》《将进酒》《早发白帝城》《黄鹤楼送孟浩然之广陵》等。李白所作词赋,就其开创意义及艺术成就而言,享有极为崇高的地位,后世誉为“诗仙”,与诗圣杜甫并称“李杜”。";Message systemMessage =newSystemMessage(message);
messages.add(systemMessage);}/**
* 存储用户发送的消息
*/privatevoidaddUserMessage(String message){Message userMessage =newUserMessage(message);
messages.add(userMessage);}/**
* 存储AI回复的消息
*/privatevoidaddAssistantMessage(String message){Message assistantMessage =newAssistantMessage(message);
messages.add(assistantMessage);}/**
* 聊天接口
*/publicStringchat(String message){addUserMessage(message);String result = aiClient.call(newPrompt(messages)).getResult().getOutput().getContent();addAssistantMessage(result);update();return result;}/**
* 流式聊天接口
*/publicFlux<String>chatStream(String message){addUserMessage(message);StringBuffer fullReply =newStringBuffer();Flux<String> fluxResult = aiClient.stream(newPrompt(messages)).flatMap(response ->{String reply = response.getResult().getOutput().getContent();//拼接回复内容
fullReply.append(reply);returnFlux.just(reply);}).doOnComplete(()->{//监听流式响应完成,完整回复存入消息记录System.out.println(fullReply);addAssistantMessage(String.valueOf(fullReply));});update();return fluxResult;}/**
* 更新消息记录
*/privatevoidupdate(){if(messages.size()>MAX_SIZE){
messages = messages.subList(messages.size()-MAX_SIZE, messages.size());}}}
4、调用接口
@RestController@RequestMapping("/ollama")publicclassOllamaController{@ResourceprivateOllamaChatModel ollamaChatModel;/**
* 简单调用
*/@PostMapping(value ="/ai/ask")publicObjectask(String msg){String called = ollamaChatModel.call(msg);System.out.println(called);return called;}/***
* 流式方式
*/@PostMapping(value ="/stream", produces =MediaType.TEXT_EVENT_STREAM_VALUE)publicFlux<String>stream(String msg){return ollamaChatModel.stream(msg).flatMapSequential(Flux::just);}privatefinalCompletion completion;publicOllamaController(Completion completion){this.completion = completion;}/**
* 分析上下文聊天
*/@PostMapping("/chat")publicStringchat(String message){return completion.chat(message);}/**
* 流式上下文
*/@PostMapping(value ="/chatStream", produces =MediaType.TEXT_EVENT_STREAM_VALUE)publicFlux<String>chatStream(@RequestBodyString message){return completion.chatStream(message);}}
5、测试调用
6、前端使用fetch处理流式数据
<!DOCTYPEhtml><html><head><metaname="viewport"content="width=device-width, initial-scale=1.0"><title>Test Page</title></head><body><inputtype="text"id="inputData"><buttononclick="sendRequest()">发送</button><divid="output"></div><script>const s = document.getElementById('output');//获取元素IDfunctionsendRequest(msg){const inputData = document.getElementById('inputData').value;
s.innerText +=(inputData +"\n");// 发送 POST 请求fetch('http://localhost:8088/ollama/chatStream',{method:"POST",body:JSON.stringify({"message": inputData
}),timeout:0,dataType:"text/event-stream",headers:{"Content-Type":"application/json"},}).then(response=>{// 检查响应是否成功if(!response.ok){thrownewError('Network response was not ok');}// 返回一个可读流return response.body;}).then(body=>{const reader = body.getReader();// 读取数据流functionread(){return reader.read().then(({
done,
value
})=>{// 检查是否读取完毕if(done){
console.log('已传输完毕');
s.innerText +="\n";return;}// 处理每个数据块// console.log('收到的数据:', value);let data =newTextDecoder().decode(value);//处理data:字样,格式化流数据
s.innerText += data.replace(/data:/g,"").replace(/\n/g,"");;// 继续读取下一个数据块read();});}// 开始读取数据流read();}).catch(error=>{
console.error('Fetch error:', error);});}</script></body></html>
标签:
ai
spring boot
本文转载自: https://blog.csdn.net/var200/article/details/141380717
版权归原作者 Mr.var 所有, 如有侵权,请联系我们删除。
版权归原作者 Mr.var 所有, 如有侵权,请联系我们删除。