0


Spring boot集成kafka(windows)

1.环境搭建

下载地址:https://kafka.apache.org/downloads

解压缩即可完成安装

2.服务启动

  1. //我演示使用的windows版,命令如下
  2. //进入命令执行目录
  3. cd D:\queue\kafka_2.13-2.8.1\bin\windows
  4. //启动zookeeper
  5. zookeeper-server-start.bat ..\..\config\zookeeper.properties
  6. //启动kafka
  7. kafka-server-start.bat ..\..\config\server.properties

我使用的是2.8.1这个版本,启动时可以直接使用kafka包自带的zookeeper进行启动,如果启动完zookeeper后,启动kafka发生错误,可能需要下载一个和kafka相应版本的zookeeper。

3.名词说明

  • Broker。负责接收和处理客户端发送过来的请求,以及对消息进行持久化。虽然多个 Broker 进程能够运行在同一台机器上,但更常见的做法是将不同的 Broker 分散运行在不同的机器上
  • 主题:Topic。主题是承载消息的逻辑容器,在实际使用中多用来区分具体的业务。
  • 分区:Partition。一个有序不变的消息序列。每个主题下可以有多个分区。
  • 消息:这里的消息就是指 Kafka 处理的主要对象。
  • 消息位移:Offset。表示分区中每条消息的位置信息,是一个单调递增且不变的值。
  • 副本:Replica。Kafka 中同一条消息能够被拷贝到多个地方以提供数据冗余,这些地方就是所谓的副本。副本还分为领导者副本和追随者副本,各自有不同的角色划分。每个分区可配置多个副本实现高可用。一个分区的N个副本一定在N个不同的Broker上。
  • Leader:每个分区多个副本的“主”副本,生产者发送数据的对象,以及消费者消费数据的对象,都是 Leader。
  • Follower:每个分区多个副本的“从”副本,实时从 Leader 中同步数据,保持和 Leader 数据的同步。Leader 发生故障时,某个 Follower 还会成为新的 Leader。
  • 生产者:Producer。向主题发布新消息的应用程序。
  • 消费者:Consumer。从主题订阅新消息的应用程序。
  • 消费者位移:Consumer Offset。表示消费者消费进度,每个消费者都有自己的消费者位移。offset保存在broker端的内部topic中,不是在clients中保存
  • 消费者组:Consumer Group。多个消费者实例共同组成的一个组,同时消费多个分区以实现高吞吐。
  • 重平衡:Rebalance。消费者组内某个消费者实例挂掉后,其他消费者实例自动重新分配订阅主题分区的过程。Rebalance 是 Kafka 消费者端实现高可用的重要手段。

4.执行步骤

(1) Producer 生产消息,发送到Broker中

(2) Leader状态的Broker接收消息,写入到相应topic中。在一个分区内,这些消息被索引并连同时间戳存储在一起

(3) Leader状态的Broker接收完毕以后,传给Follow状态的Broker作为副本备份

(4) Consumer 消费者的进程可以从分区订阅,并消费消息

5.示例

(1)引入依赖

  1. <dependency>
  2. <groupId>org.springframework.kafka</groupId>
  3. <artifactId>spring-kafka</artifactId>
  4. </dependency>
  5. 这边默认使用2.8.10版本

(2)配置

  1. kafka:
  2. bootstrap-servers: 127.0.0.1:9092
  3. consumer:
  4. group-id: kafak_order

(2)服务层

  1. package com.example.demo.kafka.impl;
  2. import cn.hutool.core.util.StrUtil;
  3. import com.example.demo.kafka.KafkaMessageService;
  4. import org.springframework.beans.factory.annotation.Autowired;
  5. import org.springframework.kafka.core.KafkaTemplate;
  6. import org.springframework.kafka.support.SendResult;
  7. import org.springframework.stereotype.Service;
  8. import org.springframework.util.concurrent.ListenableFuture;
  9. import org.springframework.util.concurrent.ListenableFutureCallback;
  10. /**
  11. * @author linaibo
  12. * @version 1.0
  13. * Create by 2022/12/25 19:59
  14. */
  15. @Service
  16. public class KafkaMessageServiceImpl implements KafkaMessageService {
  17. @Autowired
  18. private KafkaTemplate<String,String> kafkaTemplate;
  19. @Override
  20. public void sendMessage(String msg) {
  21. System.out.println("Kafka消息开始发送");
  22. ListenableFuture<SendResult<String,String>> future = kafkaTemplate.send("order",msg);
  23. future.addCallback(new ListenableFutureCallback<SendResult<String, String>>() {
  24. @Override
  25. public void onFailure(Throwable ex) {
  26. System.out.println("发送消息失败" + ex.getMessage());
  27. }
  28. @Override
  29. public void onSuccess(SendResult<String, String> result) {
  30. //主题
  31. String topic = result.getRecordMetadata().topic();
  32. //分区
  33. int partition = result.getRecordMetadata().partition();
  34. //offset
  35. long offset = result.getRecordMetadata().offset();
  36. System.out.println(StrUtil.format("消息发送成功,topic={},partition={},offset={}",topic,partition,offset));
  37. }
  38. });
  39. }}

将消息发送到特定的主题中,并对结果进行判断,成功的场合可以获取消息的信息,失败的场合可以获取失败的原因。

(3)监听器

  1. package com.example.demo.kafka.listener;
  2. import org.apache.kafka.clients.consumer.ConsumerRecord;
  3. import org.springframework.kafka.annotation.KafkaListener;
  4. import org.springframework.stereotype.Component;
  5. /**
  6. * @author linaibo
  7. * @version 1.0
  8. * Create by 2022/12/25 20:02
  9. */
  10. @Component
  11. public class KafkaMessageListener {
  12. @KafkaListener(topics = {"order"})
  13. public void onMessage(ConsumerRecord<String,String> record){
  14. System.out.println("接收到发送的kafka消息" + record.value());
  15. System.out.println("接收到发送的kafka消息" + record);
  16. }
  17. }

运行结果

  1. Kafka消息开始发送
  2. 2022-12-31 13:10:14.366 INFO 78104 --- [nio-8888-exec-1] o.a.k.clients.producer.ProducerConfig : ProducerConfig values:
  3. acks = -1
  4. batch.size = 16384
  5. bootstrap.servers = [127.0.0.1:9092]
  6. buffer.memory = 33554432
  7. client.dns.lookup = use_all_dns_ips
  8. client.id = producer-1
  9. compression.type = none
  10. connections.max.idle.ms = 540000
  11. delivery.timeout.ms = 120000
  12. enable.idempotence = true
  13. interceptor.classes = []
  14. key.serializer = class org.apache.kafka.common.serialization.StringSerializer
  15. linger.ms = 0
  16. max.block.ms = 60000
  17. max.in.flight.requests.per.connection = 5
  18. max.request.size = 1048576
  19. metadata.max.age.ms = 300000
  20. metadata.max.idle.ms = 300000
  21. metric.reporters = []
  22. metrics.num.samples = 2
  23. metrics.recording.level = INFO
  24. metrics.sample.window.ms = 30000
  25. partitioner.class = class org.apache.kafka.clients.producer.internals.DefaultPartitioner
  26. receive.buffer.bytes = 32768
  27. reconnect.backoff.max.ms = 1000
  28. reconnect.backoff.ms = 50
  29. request.timeout.ms = 30000
  30. retries = 2147483647
  31. retry.backoff.ms = 100
  32. sasl.client.callback.handler.class = null
  33. sasl.jaas.config = null
  34. sasl.kerberos.kinit.cmd = /usr/bin/kinit
  35. sasl.kerberos.min.time.before.relogin = 60000
  36. sasl.kerberos.service.name = null
  37. sasl.kerberos.ticket.renew.jitter = 0.05
  38. sasl.kerberos.ticket.renew.window.factor = 0.8
  39. sasl.login.callback.handler.class = null
  40. sasl.login.class = null
  41. sasl.login.connect.timeout.ms = null
  42. sasl.login.read.timeout.ms = null
  43. sasl.login.refresh.buffer.seconds = 300
  44. sasl.login.refresh.min.period.seconds = 60
  45. sasl.login.refresh.window.factor = 0.8
  46. sasl.login.refresh.window.jitter = 0.05
  47. sasl.login.retry.backoff.max.ms = 10000
  48. sasl.login.retry.backoff.ms = 100
  49. sasl.mechanism = GSSAPI
  50. sasl.oauthbearer.clock.skew.seconds = 30
  51. sasl.oauthbearer.expected.audience = null
  52. sasl.oauthbearer.expected.issuer = null
  53. sasl.oauthbearer.jwks.endpoint.refresh.ms = 3600000
  54. sasl.oauthbearer.jwks.endpoint.retry.backoff.max.ms = 10000
  55. sasl.oauthbearer.jwks.endpoint.retry.backoff.ms = 100
  56. sasl.oauthbearer.jwks.endpoint.url = null
  57. sasl.oauthbearer.scope.claim.name = scope
  58. sasl.oauthbearer.sub.claim.name = sub
  59. sasl.oauthbearer.token.endpoint.url = null
  60. security.protocol = PLAINTEXT
  61. security.providers = null
  62. send.buffer.bytes = 131072
  63. socket.connection.setup.timeout.max.ms = 30000
  64. socket.connection.setup.timeout.ms = 10000
  65. ssl.cipher.suites = null
  66. ssl.enabled.protocols = [TLSv1.2]
  67. ssl.endpoint.identification.algorithm = https
  68. ssl.engine.factory.class = null
  69. ssl.key.password = null
  70. ssl.keymanager.algorithm = SunX509
  71. ssl.keystore.certificate.chain = null
  72. ssl.keystore.key = null
  73. ssl.keystore.location = null
  74. ssl.keystore.password = null
  75. ssl.keystore.type = JKS
  76. ssl.protocol = TLSv1.2
  77. ssl.provider = null
  78. ssl.secure.random.implementation = null
  79. ssl.trustmanager.algorithm = PKIX
  80. ssl.truststore.certificates = null
  81. ssl.truststore.location = null
  82. ssl.truststore.password = null
  83. ssl.truststore.type = JKS
  84. transaction.timeout.ms = 60000
  85. transactional.id = null
  86. value.serializer = class org.apache.kafka.common.serialization.StringSerializer
  87. 2022-12-31 13:10:14.376 INFO 78104 --- [nio-8888-exec-1] o.a.k.clients.producer.KafkaProducer : [Producer clientId=producer-1] Instantiated an idempotent producer.
  88. 2022-12-31 13:10:14.390 INFO 78104 --- [nio-8888-exec-1] o.a.kafka.common.utils.AppInfoParser : Kafka version: 3.1.2
  89. 2022-12-31 13:10:14.390 INFO 78104 --- [nio-8888-exec-1] o.a.kafka.common.utils.AppInfoParser : Kafka commitId: f8c67dc3ae0a3265
  90. 2022-12-31 13:10:14.390 INFO 78104 --- [nio-8888-exec-1] o.a.kafka.common.utils.AppInfoParser : Kafka startTimeMs: 1672463414390
  91. 2022-12-31 13:10:14.397 INFO 78104 --- [ad | producer-1] org.apache.kafka.clients.Metadata : [Producer clientId=producer-1] Resetting the last seen epoch of partition order-0 to 0 since the associated topicId changed from null to Cc4Zxy54SbC-ylUTv7wCKQ
  92. 2022-12-31 13:10:14.397 INFO 78104 --- [ad | producer-1] org.apache.kafka.clients.Metadata : [Producer clientId=producer-1] Cluster ID: 9kfe9DyPRpeGhkcflXFSTA
  93. 2022-12-31 13:10:14.398 INFO 78104 --- [ad | producer-1] o.a.k.c.p.internals.TransactionManager : [Producer clientId=producer-1] ProducerId set to 1002 with epoch 0
  94. 接收到发送的kafka消息258741369
  95. 接收到发送的kafka消息ConsumerRecord(topic = order, partition = 0, leaderEpoch = 0, offset = 5, CreateTime = 1672463414397, serialized key size = -1, serialized value size = 9, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 258741369)
  96. 消息发送成功,topic=order,partition=0,offset=5

6.集群搭建

kafka集群、listeners配置、broker&topic&partition(leader、follower)关系、消费问题(同步、异步、ack应答机制、缓冲区、消费者poll长轮询)_鸢尾の的博客-CSDN博客_kafka listeners配置

7.问题

报错{orderInfo=UNKNOWN_TOPIC_OR_PARTITION}

服务启动中修改了log文件的路径

解决方法:

将log文件路径删除,再次重新启动zookeeper和kafka ,两个log的文件目录要一致

标签: kafka spring boot java

本文转载自: https://blog.csdn.net/m0_72167535/article/details/128438044
版权归原作者 linab112 所有, 如有侵权,请联系我们删除。

“Spring boot集成kafka(windows)”的评论:

还没有评论