0


48 | DMA:为什么Kafka这么快?

过去几年里,整个计算机产业界,都在尝试不停地提升 I/O 设备的速度。把 HDD 硬盘换成 SSD 硬盘,我们仍然觉得不够快;用 PCI Express 接口的 SSD 硬盘替代 SATA 接口的 SSD 硬盘,我们还是觉得不够快,所以,现在就有了傲腾(Optane)这样的技术。

但是,无论 I/O 速度如何提升,比起 CPU,总还是太慢。SSD 硬盘的 IOPS 可以到 2 万、4 万,但是我们 CPU 的主频有 2GHz 以上,也就意味着每秒会有 20 亿次的操作。

如果我们对于 I/O 的操作,都是由 CPU 发出对应的指令,然后等待 I/O 设备完成操作之后返回,那 CPU 有大量的时间其实都是在等待 I/O 设备完成操作。

但是,这个 CPU 的等待,在很多时候,其实并没有太多的实际意义。我们对于 I/O 设备的大量操作,其实都只是把内存里面的数据,传输到 I/O 设备而已。在这种情况下,其实 CPU 只是在傻等而已。特别是当传输的数据量比较大的时候,比如进行大文件复制,如果所有数据都要经过 CPU,实在是有点儿太浪费时间了。

因此,计算机工程师们,就发明了 DMA 技术,也就是直接内存访问(Direct Memory Access)技术,来减少 CPU 等待的时间。

理解 DMA,一个协处理器

其实 DMA 技术很容易理解,本质上,DMA 技术就是我们在主板上放一块独立的芯片。在进行内存和 I/O 设备的数据传输的时候,我们不再通过 CPU 来控制数据传输,而直接通过 DMA 控制器(DMA Controller,简称 DMAC)。这块芯片,我们可以认为它其实就是一个协处理器(Co-Processor)。

DMAC 最有价值的地方体现在,当我们要传输的数据特别大、速度特别快,或者传输的数据特别小、速度特别慢的时候。

比如说,我们用千兆网卡或者硬盘传输大量数据的时候,如果都用 CPU 来搬运的话,肯定忙不过来,所以可以选择 DMAC。而当数据传输很慢的时候,DMAC 可以等数据到齐了,再发送信号,给到 CPU 去处理,而不是让 CPU 在那里忙等待。

好了,现在应该明白 DMAC 的价值,知道了它适合用在什么情况下。那我们现在回过头来看。我们上面说,DMAC 是一块“协处理器芯片”,这是为什么呢?

注意,这里面的“协”字。DMAC 是在“协助”CPU,完成对应的数据传输工作。在 DMAC 控制数据传输的过程中,我们还是需要 CPU 的。

除此之外,DMAC 其实也是一个特殊的 I/O 设备,它和 CPU 以及其他 I/O 设备一样,通过连接到总线来进行实际的数据传输。总线上的设备呢,其实有两种类型。一种我们称之为主设备(Master),另外一种,我们称之为从设备(Slave)。

想要主动发起数据传输,必须要是一个主设备才可以,CPU 就是主设备。而我们从设备(比如硬盘)只能接受数据传输。所以,如果通过 CPU 来传输数据,要么是 CPU 从 I/O 设备读数据,要么是 CPU 向 I/O 设备写数据。

这个时候你可能要问了,那我们的 I/O 设备不能向主设备发起请求么?可以是可以,不过这个发送的不是数据内容,而是控制信号。I/O 设备可以告诉 CPU,我这里有数据要传输给你,但是实际数据是 CPU 拉走的,而不是 I/O 设备推给 CPU 的。

不过,DMAC 就很有意思了,它既是一个主设备,又是一个从设备。对于 CPU 来说,它是一个从设备;对于硬盘这样的 IO 设备来说呢,它又变成了一个主设备。那使用 DMAC 进行数据传输的过程究竟是什么样的呢?下面我们来具体看看。

  1. 首先,CPU 还是作为一个主设备,向 DMAC 设备发起请求。这个请求,其实就是在 DMAC 里面修改配置寄存器。

2.CPU 修改 DMAC 的配置的时候,会告诉 DMAC 这样几个信息:

首先是源地址的初始值以及传输时候的地址增减方式。

所谓源地址,就是数据要从哪里传输过来。如果我们要从内存里面写入数据到硬盘上,那么就是要读取的数据在内存里面的地址。如果是从硬盘读取数据到内存里,那就是硬盘的 I/O 接口的地址。

我们讲过总线的时候说过,I/O 的地址可以是一个内存地址,也可以是一个端口地址。而地址的增减方式就是说,数据是从大的地址向小的地址传输,还是从小的地址往大的地址传输。

其次是目标地址初始值和传输时候的地址增减方式。目标地址自然就是和源地址对应的设备,也就是我们数据传输的目的地。

第三个自然是要传输的数据长度,也就是我们一共要传输多少数据。

  1. 设置完这些信息之后,DMAC 就会变成一个空闲的状态(Idle)。

  2. 如果我们要从硬盘上往内存里面加载数据,这个时候,硬盘就会向 DMAC 发起一个数据传输请求。这个请求并不是通过总线,而是通过一个额外的连线。

  3. 然后,我们的 DMAC 需要再通过一个额外的连线响应这个申请。

  4. 于是,DMAC 这个芯片,就向硬盘的接口发起要总线读的传输请求。数据就从硬盘里面,读到了 DMAC 的控制器里面。

  5. 然后,DMAC 再向我们的内存发起总线写的数据传输请求,把数据写入到内存里面。

8.DMAC 会反复进行上面第 6、7 步的操作,直到 DMAC 的寄存器里面设置的数据长度传输完成。

  1. 数据传输完成之后,DMAC 重新回到第 3 步的空闲状态。

所以,整个数据传输的过程中,我们不是通过 CPU 来搬运数据,而是由 DMAC 这个芯片来搬运数据。但是 CPU 在这个过程中也是必不可少的。因为传输什么数据,从哪里传输到哪里,其实还是由 CPU 来设置的。这也是为什么,DMAC 被叫作“协处理器”。

现在的外设里面,很多都内置了 DMAC

最早,计算机里是没有 DMAC 的,所有数据都是由 CPU 来搬运的。随着人们对于数据传输的需求越来越多,先是出现了主板上独立的 DMAC 控制器。到了今天,各种 I/O 设备越来越多,数据传输的需求越来越复杂,使用的场景各不相同。加之显示器、网卡、硬盘对于数据传输的需求都不一样,所以各个设备里面都有自己的 DMAC 芯片了。

为什么那么快?一起来看 Kafka 的实现原理

了解了 DMAC 是怎么回事儿,那你可能要问了,这和我们实际进行程序开发有什么关系呢?有什么 API,我们直接调用一下,就能加速数据传输,减少 CPU 占用吗?

你还别说,过去几年的大数据浪潮里面,还真有一个开源项目很好地利用了 DMA 的数据传输方式,通过 DMA 的方式实现了非常大的性能提升。这个项目就是 Kafka。下面我们就一起来看看它究竟是怎么利用 DMA 的。

Kafka 是一个用来处理实时数据的管道,我们常常用它来做一个消息队列,或者用来收集和落地海量的日志。作为一个处理实时数据和日志的管道,瓶颈自然也在 I/O 层面。

Kafka 里面会有两种常见的海量数据传输的情况。一种是从网络中接收上游的数据,然后需要落地到本地的磁盘上,确保数据不丢失。另一种情况呢,则是从本地磁盘上读取出来,通过网络发送出去。

我们来看一看后一种情况,从磁盘读数据发送到网络上去。如果我们自己写一个简单的程序,最直观的办法,自然是用一个文件读操作,从磁盘上把数据读到内存里面来,然后再用一个 Socket,把这些数据发送到网络上去。

File.read(fileDesc, buf, len);
Socket.send(socket, buf, len);

在这个过程中,数据一共发生了四次传输的过程。其中两次是 DMA 的传输,另外两次,则是通过 CPU 控制的传输。下面我们来具体看看这个过程。

第一次传输,是从硬盘上,读到操作系统内核的缓冲区里。这个传输是通过 DMA 搬运的。

第二次传输,需要从内核缓冲区里面的数据,复制到我们应用分配的内存里面。这个传输是通过 CPU 搬运的。

第三次传输,要从我们应用的内存里面,再写到操作系统的 Socket 的缓冲区里面去。这个传输,还是由 CPU 搬运的。

最后一次传输,需要再从 Socket 的缓冲区里面,写到网卡的缓冲区里面去。这个传输又是通过 DMA 搬运的。

这个时候,你可以回过头看看这个过程。我们只是要“搬运”一份数据,结果却整整搬运了四次。而且这里面,从内核的读缓冲区传输到应用的内存里,再从应用的内存里传输到 Socket 的缓冲区里,其实都是把同一份数据在内存里面搬运来搬运去,特别没有效率。

像 Kafka 这样的应用场景,其实大部分最终利用到的硬件资源,其实又都是在干这个搬运数据的事儿。所以,我们就需要尽可能地减少数据搬运的需求。

事实上,Kafka 做的事情就是,把这个数据搬运的次数,从上面的四次,变成了两次,并且只有 DMA 来进行数据搬运,而不需要 CPU。

@Override
public long transferFrom(FileChannel fileChannel, long position, long count) throws IOException {
    return fileChannel.transferTo(position, count, socketChannel);
}

如果你层层追踪 Kafka 的代码,你会发现,最终它调用了 Java NIO 库里的 transferTo 方法

Kafka 的代码调用了 Java NIO 库,具体是 FileChannel 里面的 transferTo 方法。我们的数据并没有读到中间的应用内存里面,而是直接通过 Channel,写入到对应的网络设备里。并且,对于 Socket 的操作,也不是写入到 Socket 的 Buffer 里面,而是直接根据描述符(Descriptor)写入到网卡的缓冲区里面。于是,在这个过程之中,我们只进行了两次数据传输。

第一次,是通过 DMA,从硬盘直接读到操作系统内核的读缓冲区里面。第二次,则是根据 Socket 的描述符信息,直接从读缓冲区里面,写入到网卡的缓冲区里面。

这样,我们同一份数据传输的次数从四次变成了两次,并且没有通过 CPU 来进行数据搬运,所有的数据都是通过 DMA 来进行传输的。

在这个方法里面,我们没有在内存层面去“复制(Copy)”数据,所以这个方法,也被称之为零拷贝(Zero-Copy)。

IBM Developer Works 里面有一篇文章,专门写过程序来测试过,在同样的硬件下,使用零拷贝能够带来的性能提升。在这里放上这篇文章链接。在这篇文章最后,可以看到,无论传输数据量的大小,传输同样的数据,使用了零拷贝能够缩短 65% 的时间,大幅度提升了机器传输数据的吞吐量。想要深入了解零拷贝,建议可以仔细读一读这篇文章。

总结延伸

讲到这里,相信对 DMA 的原理、作用和效果都有所理解了。那么,我们一起来回顾总结一下。

如果我们始终让 CPU 来进行各种数据传输工作,会特别浪费。一方面,我们的数据传输工作用不到多少 CPU 核心的“计算”功能。另一方面,CPU 的运转速度也比 I/O 操作要快很多。所以,我们希望能够给 CPU“减负”。

于是,工程师们就在主板上放上了 DMAC 这样一个协处理器芯片。通过这个芯片,CPU 只需要告诉 DMAC,我们要传输什么数据,从哪里来,到哪里去,就可以放心离开了。后续的实际数据传输工作,都会由 DMAC 来完成。随着现代计算机各种外设硬件越来越多,光一个通用的 DMAC 芯片不够了,我们在各个外设上都加上了 DMAC 芯片,使得 CPU 很少再需要关心数据传输的工作了。

在我们实际的系统开发过程中,利用好 DMA 的数据传输机制,也可以大幅提升 I/O 的吞吐率。最典型的例子就是 Kafka。

传统地从硬盘读取数据,然后再通过网卡向外发送,我们需要进行四次数据传输,其中有两次是发生在内存里的缓冲区和对应的硬件设备之间,我们没法节省掉。但是还有两次,完全是通过 CPU 在内存里面进行数据复制。

在 Kafka 里,通过 Java 的 NIO 里面 FileChannel 的 transferTo 方法调用,我们可以不用把数据复制到我们应用程序的内存里面。通过 DMA 的方式,我们可以把数据从内存缓冲区直接写到网卡的缓冲区里面。在使用了这样的零拷贝的方法之后呢,我们传输同样数据的时间,可以缩减为原来的 1/3,相当于提升了 3 倍的吞吐率。

这也是为什么,Kafka 是目前实时数据传输管道的标准解决方案。

推荐阅读

学完了这一讲之后,推荐阅读一下 Kafka 的论文,Kakfa:a Distrubted Messaging System for Log Processing。Kafka 的论文其实非常简单易懂,是一个很好的让你了解系统、日志、分布式系统的入门材料。

课后思考

你可以自己尝试写一段使用零拷贝和不使用零拷贝传输数据的代码,然后看一看两者之间的性能差异。你可以看看,零拷贝能够带来多少吞吐量提升。

标签: kafka DMA

本文转载自: https://blog.csdn.net/qq_37756660/article/details/135936018
版权归原作者 _Rye_ 所有, 如有侵权,请联系我们删除。

“48 | DMA:为什么Kafka这么快?”的评论:

还没有评论