0


毕业设计项目 基于大数据人才岗位数据分析

文章目录


1 前言

这里是毕设分享系列,学长分享优质毕业设计项目,今天要分享的是

🚩 基于大数据人才岗位数据分析

项目运行效果:

毕业设计 基于大数据人才岗位数据分析

🧿 项目分享:见文末!

1. 数据集说明

这是一份来自厦门人才网的企业招聘数据,采集日期为 2021-01-14,总计 100,077 条记录,大小为 122 M,包含 19 个字段。

2. 数据处理

2.1 数据清洗

使用 pandas 对数据进行清洗,主要包括:去重、缺失值填充、格式化、计算冗余字段。

# 数据重复处理: 删除重复值# print(data[data.duplicated()])
data.drop_duplicates(inplace=True)
data.reset_index(drop=True, inplace=True)# 缺失值查看、处理:
data.isnull().sum()# 招聘人数处理:缺失值填 1 ,一般是一人; 若干人当成 3人
data['num'].unique()
data['num'].fillna(1, inplace=True)
data['num'].replace('若干',3, inplace=True)# 年龄要求:缺失值填 无限;格式化
data['age'].unique()
data['age'].fillna('不限', inplace=True)
data['age']= data['age'].apply(lambda x: x.replace('岁至','-').replace('岁',''))# 语言要求: 忽视精通程度,格式化
data['lang'].unique()
data['lang'].fillna('不限', inplace=True)
data['lang']= data['lang'].apply(lambda x: x.split('水平')[0])
data['lang'].replace('其他','不限', inplace=True)# 月薪: 格式化。根据一般经验取低值,比如 5000-6000, 取 5000
data['salary'].unique()
data['salary']= data['salary'].apply(lambda x: x.replace('参考月薪: ','')if'参考月薪: 'instr(x)else x)
data['salary']= data['salary'].apply(lambda x: x.split('-',1)[0]if'-'instr(x)else x )
data['salary'].fillna('0', inplace=True)# 其它岗位说明:缺失值填无
data.fillna('其他', inplace=True)# 工作年限格式化defjobage_clean(x):if x in['应届生','不限']:return x
    elif re.findall('\d+年', x):return re.findall('(\d+)年', x)[0]elif'年'in x:
        x = re.findall('\S{1,2}年', x)[0]
        x = re.sub('厂|验|年|,','', x)
        digit_map ={'一':1,'二':2,'三':3,'四':4,'五':5,'六':6,'七':7,'八':8,'九':9,'十':10,'十一':11,'十二':12,'十三':13,'十四':14,'十五':15,'十六':16,'两':2}return digit_map.get(x, x)return'其它工作经验'

data['jobage'].unique()
data['jobage']= data['jobage'].apply(jobage_clean)# 性别格式化
data['sex'].unique()
data['sex'].replace('无','不限', inplace=True)# 工作类型格式化
data['job_type'].unique()
data['job_type'].replace('毕业生见习','实习', inplace=True)# 学历格式化
data['education'].unique()
data['education']= data['education'].apply(lambda x: x[:2])# 公司类型 格式化defcompany_type_clean(x):iflen(x)>100or'其他'in x:return'其他'elif re.findall('私营|民营', x):return'民营/私营'elif re.findall('外资|外企代表处', x):return'外资'elif re.findall('合资', x):return'合资'return x

data['company_type'].unique()
data['company_type']= data['company_type'].apply(company_type_clean)# 行业 格式化。多个行业,取第一个并简单归类defindustry_clean(x):iflen(x)>100or'其他'in x:return'其他'
    industry_map ={'IT互联网':'互联网|计算机|网络游戏','房地产':'房地产','电子技术':'电子技术','建筑':'建筑|装潢','教育培训':'教育|培训','批发零售':'批发|零售','金融':'金融|银行|保险','住宿餐饮':'餐饮|酒店|食品','农林牧渔':'农|林|牧|渔','影视文娱':'影视|媒体|艺术|广告|公关|办公|娱乐','医疗保健':'医疗|美容|制药','物流运输':'物流|运输','电信通信':'电信|通信','生活服务':'人力|中介'}for industry, keyword in industry_map.items():if re.findall(keyword, x):return industry
    return x.split('、')[0].replace('/','')

data['industry'].unique()
data['industry']= data['industry'].apply(industry_clean)# 工作时间格式化
data['worktime'].unique()
data['worktime_day']= data['worktime'].apply(lambda x: x.split('小时')[0]if'小时'in x else0)
data['worktime_week']= data['worktime'].apply(lambda x: re.findall('\S*周', x)[0]if'周'in x else0)# 从工作要求中正则解析出:技能要求
data['skill']= data['require'].apply(lambda x:'、'.join(re.findall('[a-zA-Z]+', x)))

2.2 数据导入

将清洗后的数据导入到 hive

CREATETABLE`job`(`position` string COMMENT'职位',`num` string COMMENT'招聘人数',`company` string COMMENT'公司',`job_type` string COMMENT'职位类型',`jobage` string COMMENT'工作年限',`lang` string COMMENT'语言',`age` string COMMENT'年龄',`sex` string COMMENT'性别',`education` string COMMENT'学历',`workplace` string COMMENT'工作地点',`worktime` string COMMENT'工作时间',`salary` string COMMENT'薪资',`welfare` string COMMENT'福利待遇',`hr` string COMMENT'招聘人',`phone` string COMMENT'联系电话',`address` string COMMENT'联系地址',`company_type` string COMMENT'公司类型',`industry` string COMMENT'行业',`require` string COMMENT'岗位要求',`worktime_day` string COMMENT'工作时间(每天)',`worktime_week` string COMMENT'工作时间(每周)',`skill` string COMMENT'技能要求')row format delimited
fieldsterminatedby','linesterminatedby'\n';-- 加载数据LOADDATA INPATH '/tmp/job.csv' OVERWRITE INTOTABLE job;

通过 hue 查看一下数据

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MvFQy0xU-1660662177250)(https://gitee.com/TurboWay/blogimg/raw/master/img/image-20210121195311442.png)]

然后随便点击一条数据,可以看到,经过前面的清洗,现在的字段已经很好看了,后续的分析也会变得简单许多。

image-20210122171323036

3. 数据分析可视化

3.1 整体情况(招聘企业数、岗位数、招聘人数、平均工资)

招聘企业数为 10093,在招的岗位数有 10 万个,总的招聘人数为 26 万人,平均工资为 5576 元。

image-20210121202443278

3.2 企业主题

行业情况

各行业的招聘人数排行 TOP10 如下,可以看到 IT 互联网最缺人。

由于数据源的行业分类比较草率,很多公司的分类其实并不是很准确,所以这个结果仅供参考。

image-20210122101934481

公司类型

从招聘人数上来看,民营/私营的企业最缺人,事业单位的招聘人数最少。

image-20210122103541571

从薪资待遇来看,上市公司平均薪资最高 5983 元,而台资/港资则最少 4723 元。

image-20210122104008379

最缺人的公司 TOP

最缺人的公司果然是人力资源公司,总的要招聘 2000 多个人,从详情来看,大多是代招一些流水线岗位。

image-20210122105804275

image-20210122133941542

平均薪资最高的公司 TOP

平均薪资最高的公司 上海美莱投资管理有限公司 居然有 5 万多,一惊之下,查了下这家公司的招聘信息,可以看到该公司在招的都是高级岗,比如 集团片区总经理(副总裁级),这个岗位人数达到 20 人,岗位月薪 6 万,所以直接把平均薪资拉高了,而且工作地点也不在厦门。

由以上分析,可以得知根据招聘信息来推算平均工资,其实误差还是比较大的,仅供参考。

image-20210122111007571

image-20210122111324460

工作时间

从每天工作时间占比 TOP 10 来看,大部分职位是 8 小时工作制,紧接着是 7.5 小时 和 7小时。还有一些每天上班时间要达到 12 小时,主要是 保安 和 普工 这类岗位。

image-20210122142102501

每周工作天数占比来看,大部分还是 5天/周的双休制,不过 6 天/周、5.5 天/周、大小周的占比也是相当高。

image-20210122165511526

工作地点

岗位数量的分布图,颜色越深代表数量越大,可以看到思明区的工作机会最多,其次是湖里、集美、同安、海沧、翔安。

image-20210123205048473

福利词云

image-20210122140146555

3.3 岗位主题

工作经验要求

从岗位数量来看,一半以上的岗位对工作经验是没有要求的。在有经验要求的岗位里面,1-3 年工作经验的市场需求是最大的。

image-20210122145817970

从平均工资来看,符合一般认知。工作经验越多,工资也越高,10 年以上的工作经验最高,平均工资为 13666 元;应届生最低,平均工资为 4587 元。

image-20210122150102148

学历要求

从岗位数来看,大部分岗位的学历要求为大专以上,换言之,在厦门,只要大专学历,就很好找工作了。

image-20210122150543260

从平均工资来看,学历越高,工资越高,这也符合一般认知,谁说的读书无用论来着。

有趣的是,不限学历的平均工资居然排在了高中的前面,或许这是 九年义务教育的普及与大学扩招带来的内卷,在招聘方眼里,只有两大类:上过大学和没上过大学,从而导致大专以下的学历优势不再明显。

image-20210122151013456

性别要求

岗位数方面,有 6974 个岗位,明确要求性别为 女,仅有 575 个岗位要求性别为 男。

平均工资方面,女性岗位的平均工资为 5246 元,而男性则为 4454 元。

虽然绝大多数岗位都是不限制性别的,但是,不管是从岗位数量还是平均工资来看,在厦门,女性比男性似乎有更多的职场优势。

image-20210122152405709

image-20210122152256552

年龄要求

年龄要求一般有一个上限和下限,现在只考虑上限,并通过上限来分析一下,所谓 35 岁的危机。

岗位数量上来看,大多数岗位是不限制年龄的,有限制年龄的岗位里面,35 岁以后的岗位有 7327 个,35 岁及以下的岗位有 32967 个,

岗位数量上确实少了非常多。

image-20210122162411758

从平均工资来看,35 岁以后的岗位 5095 元,35岁及以下的岗位 5489 元,薪资上少了 394 元。

image-20210122162735961

所以,单单考虑岗位的年龄上限,那么 35 岁以后的市场需求确实会变少。

但是,为什么会是这样的情况呢,个人认为,有可能是 35 岁 以后的职场人士,沉淀更多,进入了更高级的职位,更稳定,所以流动性比较低,自然市场上空出来的需求也会变少了,更不用说还有一部分人变成了创业者。

语言要求

大部分岗位没有语言要求,在有语言要求的岗位里面,英语妥妥的是第一位。

值得一提的是,这边还有个闽南语,因为厦门地处闽南,本地的方言就是闽南语。

image-20210122175452253

编程语言要求

比较流行的编程语言里面,被岗位要求提到的次数排行如下 。可以看到,C 语言被提及的次数远大于其它语言,不亏是排行榜常年第一的语言。比较惊讶的是如今大火的 python 被提及的次数却很少,排在倒二。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0f2WXrN9-1660662177260)(https://gitee.com/TurboWay/blogimg/raw/master/img/image-20210122172459174.png)]

这些语言的平均薪资排行,Python 最高为 8732 元。

image-20210122174532901

4. 模型预测

我们知道影响工资待遇的因素有很多:学历、工作经验、年龄、招聘方的紧急程度、技能的稀缺性、行业的发展情况。。。等等。

所以,为了简化模型,就学历和工作经验两个维度进行模型训练,尝试做工资预测。

import pandas as pd
from sklearn.linear_model import LinearRegression

defpredict(data, education):"""
    :param data: 训练数据
    :param education: 学历
    :return: 模型得分,10年工作预测
    """
    train = data[data['education']== education].to_numpy()
    x = train[:,1:2]
    y = train[:,2]# model 训练
    model = LinearRegression()
    model.fit(x, y)# model 预测
    X =[[i]for i inrange(11)]return model.score(x, y), model.predict(X)

education_list =['小学','初中','中专','高中','大专','本科','硕士','博士']
data = pd.read_csv('train.csv')

scores, values =[],[]for education in education_list:
    score, y = predict(data, education)
    scores.append(score)
    values.append(y)

result = pd.DataFrame()
result['学历']= education_list
result['模型得分']= scores
result['(1年经验)平均工资']=[value[1]for value in values]
result['(3年经验)平均工资']=[value[2]for value in values]
result['(5年经验)平均工资']=[value[4]for value in values]
result['(10年经验)平均工资']=[value[10]for value in values]print(result)

使用线性回归模型分学历进行预测,预测结果如下。

image-20210123134009379

项目运行效果:

毕业设计 基于大数据人才岗位数据分析

🧿 项目分享:见文末!


本文转载自: https://blog.csdn.net/m0_43533/article/details/142724719
版权归原作者 Mr.D学长 所有, 如有侵权,请联系我们删除。

“毕业设计项目 基于大数据人才岗位数据分析”的评论:

还没有评论