0


使用 Apache Flink 从 Hive 批量加载数据到 HBase

使用 Apache Flink 从 Hive 批量加载数据到 HBase

在大数据处理和存储中,Hadoop 生态系统提供了丰富的工具来实现高效的数据处理和管理。本篇博客将介绍如何使用 Apache Flink 将 Hive 中的数据批量加载到 HBase 中。具体来说,我们将详细讲解以下几个步骤:

  1. 从 HDFS 读取 Hive 数据
  2. 将数据转换为 HBase HFile 格式
  3. 将 HFile 加载到 HBase 表中
前置条件

在开始之前,确保你已经配置好以下环境:

  • Hadoop 集群
  • HDFS
  • Apache Flink
  • HBase
代码实现

下面是完整的实现代码:

importorg.apache.flink.api.common.functions.MapFunction;importorg.apache.flink.api.java.DataSet;importorg.apache.flink.api.java.ExecutionEnvironment;importorg.apache.flink.api.java.tuple.Tuple2;importorg.apache.flink.api.java.utils.ParameterTool;importorg.apache.flink.core.fs.Path;importorg.apache.flink.api.common.io.TextInputFormat;importorg.apache.flink.hadoopcompatibility.HadoopOutputs;importorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.hbase.HBaseConfiguration;importorg.apache.hadoop.hbase.KeyValue;importorg.apache.hadoop.hbase.TableName;importorg.apache.hadoop.hbase.client.Connection;importorg.apache.hadoop.hbase.client.ConnectionFactory;importorg.apache.hadoop.hbase.io.ImmutableBytesWritable;importorg.apache.hadoop.hbase.mapreduce.HFileOutputFormat2;importorg.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;importorg.apache.hadoop.mapreduce.Job;publicclassHiveToHBaseBulkLoad{publicstaticvoidmain(String[] args)throwsException{// 创建执行环境finalExecutionEnvironment env =ExecutionEnvironment.getExecutionEnvironment();// 解析参数finalParameterTool params =ParameterTool.fromArgs(args);String hdfsFilePath = params.getRequired("hdfsFilePath");String hfileOutputPath = params.getRequired("hfileOutputPath");String hbaseTableName = params.getRequired("hbaseTableName");String columnFamily = params.get("columnFamily","cf");String columnName = params.get("columnName","column1");// 读取 HDFS 文件TextInputFormat format =newTextInputFormat(newPath(hdfsFilePath));DataSet<String> textDataSet = env.readFile(format, hdfsFilePath);// 配置生成 HFileDataSet<Tuple2<ImmutableBytesWritable,KeyValue>> hfileDataSet = textDataSet.map(newHFileMapper(columnFamily, columnName));// 写入 HFileConfiguration conf =HBaseConfiguration.create();Job job =Job.getInstance(conf);
        hfileDataSet.output(HadoopOutputs.writeHadoopFile(job,newPath(hfileOutputPath),ImmutableBytesWritable.class,KeyValue.class,HFileOutputFormat2.class));

        env.execute("Hive to HBase Bulkload");// 加载 HFile 到 HBasebulkLoadHFilesToHBase(conf, hfileOutputPath, hbaseTableName);}privatestaticclassHFileMapperimplementsMapFunction<String,Tuple2<ImmutableBytesWritable,KeyValue>>{privatefinalString columnFamily;privatefinalString columnName;publicHFileMapper(String columnFamily,String columnName){this.columnFamily = columnFamily;this.columnName = columnName;}@OverridepublicTuple2<ImmutableBytesWritable,KeyValue>map(String value)throwsException{String[] fields = value.split("\t");String rowKey = fields[0];KeyValue kv =newKeyValue(Bytes.toBytes(rowKey),Bytes.toBytes(columnFamily),Bytes.toBytes(columnName),Bytes.toBytes(fields[1]));returnnewTuple2<>(newImmutableBytesWritable(Bytes.toBytes(rowKey)), kv);}}privatestaticvoidbulkLoadHFilesToHBase(Configuration conf,String hfileOutputPath,String hbaseTableName)throwsException{try(Connection connection =ConnectionFactory.createConnection(conf)){Job job =Job.getInstance(conf);TableName tableName =TableName.valueOf(hbaseTableName);HFileOutputFormat2.configureIncrementalLoad(job, connection.getTable(tableName), connection.getRegionLocator(tableName));LoadIncrementalHFiles loader =newLoadIncrementalHFiles(conf);
            loader.doBulkLoad(newPath(hfileOutputPath), connection.getAdmin(), connection.getTable(tableName), connection.getRegionLocator(tableName));}}}
代码详解
  1. 创建执行环境finalExecutionEnvironment env =ExecutionEnvironment.getExecutionEnvironment();
  2. 解析命令行参数finalParameterTool params =ParameterTool.fromArgs(args);String hdfsFilePath = params.getRequired("hdfsFilePath");String hfileOutputPath = params.getRequired("hfileOutputPath");String hbaseTableName = params.getRequired("hbaseTableName");String columnFamily = params.get("columnFamily","cf");String columnName = params.get("columnName","column1");
  3. 读取 HDFS 文件TextInputFormat format =newTextInputFormat(newPath(hdfsFilePath));DataSet<String> textDataSet = env.readFile(format, hdfsFilePath);
  4. 将数据转换为 HFileDataSet<Tuple2<ImmutableBytesWritable,KeyValue>> hfileDataSet = textDataSet.map(newHFileMapper(columnFamily, columnName));
  5. 写入 HFileConfiguration conf =HBaseConfiguration.create();Job job =Job.getInstance(conf);hfileDataSet.output(HadoopOutputs.writeHadoopFile(job,newPath(hfileOutputPath),ImmutableBytesWritable.class,KeyValue.class,HFileOutputFormat2.class));
  6. 执行 Flink 作业env.execute("Hive to HBase Bulkload");
  7. 加载 HFile 到 HBasebulkLoadHFilesToHBase(conf, hfileOutputPath, hbaseTableName);
  8. 自定义 HFileMapper 类privatestaticclassHFileMapperimplementsMapFunction<String,Tuple2<ImmutableBytesWritable,KeyValue>>{privatefinalString columnFamily;privatefinalString columnName;publicHFileMapper(String columnFamily,String columnName){this.columnFamily = columnFamily;this.columnName = columnName;}@OverridepublicTuple2<ImmutableBytesWritable,KeyValue>map(String value)throwsException{String[] fields = value.split("\t");String rowKey = fields[0];KeyValue kv =newKeyValue(Bytes.toBytes(rowKey),Bytes.toBytes(columnFamily),Bytes.toBytes(columnName),Bytes.toBytes(fields[1]));returnnewTuple2<>(newImmutableBytesWritable(Bytes.toBytes(rowKey)), kv);}}
  9. 实现 bulkLoadHFilesToHBase 方法privatestaticvoidbulkLoadHFilesToHBase(Configuration conf,String hfileOutputPath,String hbaseTableName)throwsException{try(Connection connection =ConnectionFactory.createConnection(conf)){Job job =Job.getInstance(conf);TableName tableName =TableName.valueOf(hbaseTableName);HFileOutputFormat2.configureIncrementalLoad(job, connection.getTable(tableName), connection.getRegionLocator(tableName));LoadIncrementalHFiles loader =newLoadIncrementalHFiles(conf); loader.doBulkLoad(newPath(hfileOutputPath), connection.getAdmin(), connection.getTable(tableName), connection.getRegionLocator(tableName));}}
总结

通过上述步骤,我们实现了从 Hive 数据到 HBase 的批量加载过程。这种方法不仅高效,而且能够处理大规模数据。希望这篇博客对你理解和应用 Flink 和 HBase 有所帮助。如果有任何问题,欢迎留言讨论。

标签: apache flink hive

本文转载自: https://blog.csdn.net/qq_27963509/article/details/139813409
版权归原作者 百年叔叔 所有, 如有侵权,请联系我们删除。

“使用 Apache Flink 从 Hive 批量加载数据到 HBase”的评论:

还没有评论