一.概要
此项目将围绕一个时间序列预测任务展开。该任务是Kaggle上的一个比赛,M5 Forecasting - Accuarcy(https://www.kaggle.com/c/m5-forecasting-accuracy/notebooks )。M5的赛题目标是预测沃尔玛各种商品在未来28天的销量。本案例使用前1913天的数据作为训练数据,来预测1914天到1941天的销量。并且,我们只对最细粒度的30490条序列进行预测。 训练数据从kaggle中自行下载:
- calendar.csv - Contains information about the dates on which the products are sold.
- sales_train_validation.csv - Contains the historical daily unit sales data per product and store [d_1 - d_1913]
- sample_submission.csv - The correct format for submissions. Reference the Evaluation tab for more info.
- sell_prices.csv - Contains information about the price of the products sold per store and date.
- sales_train_evaluation.csv - Includes sales [d_1 - d_1941] (labels used for the Public leaderboard)
以上数据下载后放入resources/advanced下,并在properties.properties中配置一下文件名和路径,以供程序读取和处理数据。
1.数据处理以及特征工程利用java spark进行提取,见TimeSeries.java。
2.模型的训练及预测利用python lightgbm进行操作,见time_series.ipynb,data.7z下是spark处理好的数据。
二.特征工程代码解读,完整见项目中代码注释
/**
* 分析和挖掘数据
* @param session
*/
public static void analysisData(SparkSession session) {
// 一.数据集
/* 1.这里是历史销量sales_train_validation数据
+--------------------+-------------+---------+-------+--------+--------+---+---+---+---+---+---+---+---+-
| id| item_id| dept_id| cat_id|store_id|state_id|d_1|d_2|d_3|d_4|d_5|d_6|d_7|d_8|d_9|d_10|...
+--------------------+-------------+---------+-------+--------+--------+---+---+---+---+---+---+---+---+---+----+
|HOBBIES_1_001_CA_...|HOBBIES_1_001|HOBBIES_1|HOBBIES| CA_1| CA| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|...
|HOBBIES_1_002_CA_...|HOBBIES_1_002|HOBBIES_1|HOBBIES| CA_1| CA| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|...
|HOBBIES_1_003_CA_...|HOBBIES_1_003|HOBBIES_1|HOBBIES| CA_1| CA| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|...
+--------------------+-------------+---------+-------+--------+--------+---+---+---+---+---+---+---+---+---+----+
schema:
|-- id: string (nullable = true)
|-- item_id: string (nullable = true)
|-- dept_id: string (nullable = true)
|-- cat_id: string (nullable = true)
|-- store_id: string (nullable = true)
|-- state_id: string (nullable = true)
|-- d_1: integer (nullable = true)
|-- d_2: integer (nullable = true)
|-- d_3: integer (nullable = true)
|-- d_4: integer (nullable = true)
|-- ......
*/
String salesTrainValidationPath = TimeSeries.class.getClassLoader().getResource(PropertiesReader.get("advanced_timeseries_sales_train_validation_csv")).getPath().replaceFirst("/", "");
Dataset<Row> salesTVDataset = session.read()
.option("sep", ",")
.option("header", true)
.option("inferSchema", true)
.csv(salesTrainValidationPath);
/*首先,我们只留下salesTVDataset中的历史特征值,删去其他列。
+---+---+---+---+---+---+---+---+---+----+
|d_1|d_2|d_3|d_4|d_5|d_6|d_7|d_8|d_9|d_10|
+---+---+---+---+---+---+---+---+---+----+
| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|...
| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|...
| 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|...
+---+---+---+---+---+---+---+---+---+----+
*/
Column[] columns = new Column[1913];
int index = 0;
for(String column : salesTVDataset.columns()) {
if(column.contains("d_")) {
columns[index] = functions.col(column);
index++;
}
}
Dataset<Row> xDataset = salesTVDataset.select(columns);
/* 2.这里是日历信息calendar数据
+----------+--------+--------+----+-----+----+---+------------+------------+------------+------------+-------+-------+-------+
| date|wm_yr_wk| weekday|wday|month|year| d|event_name_1|event_type_1|event_name_2|event_type_2|snap_CA|snap_TX|snap_WI|
+----------+--------+--------+----+-----+----+---+------------+------------+------------+------------+-------+-------+-------+
|2011-01-29| 11101|Saturday| 1| 1|2011|d_1| null| null| null| null| 0| 0| 0|
|2011-01-30| 11101| Sunday| 2| 1|2011|d_2| null| null| null| null| 0| 0| 0|
|2011-01-31| 11101| Monday| 3| 1|2011|d_3| null| null| null| null| 0| 0| 0|
+----------+--------+--------+----+-----+----+---+------------+------------+------------+------------+-------+-------+-------+
schema:
|-- date: string (nullable = true)
|-- wm_yr_wk: integer (nullable = true)
|-- weekday: string (nullable = true)
|-- wday: integer (nullable = true)
|-- month: integer (nullable = true)
|-- year: integer (nullable = true)
|-- d: string (nullable = true)
|-- event_name_1: string (nullable = true)
|-- event_type_1: string (nullable = true)
|-- event_name_2: string (nullable = true)
|-- event_type_2: string (nullable = true)
|-- snap_CA: integer (nullable = true)
|-- snap_TX: integer (nullable = true)
|-- snap_WI: integer (nullable = true)
*/
String calendarPath = TimeSeries.class.getClassLoader().getResource(PropertiesReader.get("advanced_timeseries_calendar_csv")).getPath().replaceFirst("/", "");
Dataset<Row> calendarDataset = session.read()
.option("sep", ",")
.option("header", true)
.option("inferSchema", true)
.csv(calendarPath);
/* 3.商品每周的价格信息sell_prices
+--------+-------------+--------+----------+
|store_id| item_id|wm_yr_wk|sell_price|
+--------+-------------+--------+----------+
| CA_1|HOBBIES_1_001| 11325| 9.58|
| CA_1|HOBBIES_1_001| 11326| 9.58|
| CA_1|HOBBIES_1_001| 11327| 8.26|
+--------+-------------+--------+----------+
schema:
|-- store_id: string (nullable = true)
|-- item_id: string (nullable = true)
|-- wm_yr_wk: integer (nullable = true)
|-- sell_price: double (nullable = true)
*/
// String sellPricesPath = TimeSeries.class.getClassLoader().getResource(PropertiesReader.get("advanced_timeseries_sell_prices_csv")).getPath().replaceFirst("/", "");
// Dataset<Row> sellPricesDataset = session.read()
// .option("sep", ",")
// .option("header", true)
// .option("inferSchema", true)
// .csv(sellPricesPath);
// (1).测试集,我们只是计算了第1914天的数据的特征。这只些特征只能用来预测1914天的销量,也就是说,实际上是我们的测试数据。
int targetDay = 1914;
// 使用历史数据中最后的7天构造特征
int localRange = 7;
// 由于使用前1913天的数据预测第1914天,历史数据与预测目标的距离只有1天,因此predictDistance=1
// 如果使用前1913天的数据预测第1915天,则历史数据与预测目标的距离有2天,因此predictDistance=2,以此类推
int predictDistance = 1;
Dataset<Row> testDataset = getTestDataset(salesTVDataset, calendarDataset, xDataset, targetDay, predictDistance);
// (2).训练集,为了构造训练数据,我们对1914天之前的日期进行同样的特征计算操作,并附上它们的当天销量作为数据标签。
int trainingDataDays = 7; // 为了简便,现只取7天的数据作训练集
Dataset<Row> trainDataset = getTrainDataset(salesTVDataset, calendarDataset, xDataset, trainingDataDays, targetDay, predictDistance);
String salesTrainEvaluationPath = TimeSeries.class.getClassLoader().getResource(PropertiesReader.get("advanced_timeseries__sales_train_evaluation_csv")).getPath().replaceFirst("/", "");
Dataset<Row> labelDataset = session.read()
.option("sep", ",")
.option("header", true)
.option("inferSchema", true)
.csv(salesTrainEvaluationPath);
// (3).测试集的label
Dataset<Row> testLabelDataset = getTestDatasetLabel(labelDataset, targetDay);
// (4).训练集的label
Dataset<Row> trainLabelDataset = getTrainDatasetLabel(labelDataset, targetDay, trainingDataDays, predictDistance);
// (5).保存为csv文件,供python lightgbm训练
// 保存test dataset
String testDatasetCsvPath = "E:\\idea_project\\spark_data_mining\\src\\main\\resources\\dataalgorithms\\advanced\\timeseries_data\\testdata.csv";
saveCsv(testDataset, testDataset.columns(), testDatasetCsvPath);
// 保存train dataset
String trainDatasetCsvPath = "E:\\idea_project\\spark_data_mining\\src\\main\\resources\\dataalgorithms\\advanced\\timeseries_data\\traindata.csv";
saveCsv(trainDataset, trainDataset.columns(), trainDatasetCsvPath);
// 保存test label
String testLabelCsvPath = "E:\\idea_project\\spark_data_mining\\src\\main\\resources\\dataalgorithms\\advanced\\timeseries_data\\testlabel.csv";
saveCsv(testLabelDataset, testLabelDataset.columns(), testLabelCsvPath);
// 保存train label
String trainLabelCsvPath = "E:\\idea_project\\spark_data_mining\\src\\main\\resources\\dataalgorithms\\advanced\\timeseries_data\\trainlabel.csv";
saveCsv(trainLabelDataset, trainLabelDataset.columns(), trainLabelCsvPath);
}
三.模型训练
版权归原作者 石头木V2 所有, 如有侵权,请联系我们删除。