0


基于Hadoop和Hive的聊天数据(FineBI)可视化分析

参考内容https://www.bilibili.com/read/cv15490959/

数据文件、jar包、插件

https://pan.baidu.com/s/1Mpquo0EgkyZtLHrCPIK2Qg?pwd=7w0k

1. 准备工作

在FineBI6.0\webapps\webroot\WEB-INF\lib下放置jar包

启动FineBI服务器

安装hive隔离插件

选择该文件

重启服务器

2. 新建数据库连接

在虚拟机后台启动metastore和hiveserver2服务(在hive目录下)

进入beeline客户端

--hive2://后可以是主机名--
!connect jdbc:hive2://192.168.224.112:10000

回车然后输入用户名,我的是root,再回车

密码根据自己的填(我没有),回车

如果不成功,就先配置虚拟机中/hadoop父文件夹/hadoop/etc/hadoop/core-site.xml文件

和/hive父文件夹/hive/conf/hive-site.xml文件

然后重启sh,后台挂起metastore,hiveserver2,启动beeline。

在Fine BI上新建hive数据库连接

数据库名称为自己在hive中创建的数据库,主机为虚拟机IP,端口10000,用户名root

3. 在Hive数据库中创建存放数据的表

创建dgy_30w表(myhive为我自己的数据库),操作在hive和beeline中都可以

create table myhive.dgy_30w (
    msg_time string comment "消息发送时间",
    sender_name string comment "发送人昵称",
    sender_account string comment "发送人账号",
    sender_sex string comment "发送人性别",
    sender_ip string comment "发送人ip地址",
    sender_os string comment "发送人操作系统",
    sender_phonetype string comment "发送人手机型号",
    sender_network string comment "发送人网络类型",
    sender_gps string comment "发送人的GPS定位",
    receiver_name string comment "接收人呢称",
    receiver_ip string comment "接收人IP",
    receiver_account string comment "接收人账号",
    receiver_os string comment "接收人操作系统",
    receiver_phonetype string comment"接收人手机型号",
    receiver_network string comment "接收人网络类型",
    receiver_gps string comment"接收人的GPS定位",
    receiver_sex string comment"接收人性别",
    msg_type string comment"消息类型",
    distance string comment"双方距离",
    message string comment"消息内容"
    );

上传数据

方法一:

通过Xshell的Xftp把csv文件上传到虚拟机opt目录下

把csv文件数据上传到dgy_30w表中

LOAD DATA LOCAL INPATH '/opt/chat_data-30W.csv' OVERWRITE INTO TABLE dgy_30w;

方法二:

HDFS数据加载

将csv文件上传到hdfs /data下

hdfs dfs -put /opt/chat_data-30W.csv /data

在终端beeline中输入load data inpath '/data/chat_data-30W.csv' into table dgy_30w;

LOAD DATA INPATH '/data/chat_data-30W.csv' OVERWRITE INTO TABLE dgy_30w;

导入成功。

4. ETL数据清洗

建立dgy_30w_etl表

create table myhive.dgy_30w_etl (
    msg_time string comment "消息发送时间",
    sender_name string comment "发送人昵称",
    sender_account string comment "发送人账号",
    sender_sex string comment "发送人性别",
    sender_ip string comment "发送人ip地址",
    sender_os string comment "发送人操作系统",
    sender_phonetype string comment "发送人手机型号",
    sender_network string comment "发送人网络类型",
    sender_gps string comment "发送人的GPS定位",
    receiver_name string comment "接收人呢称",
    receiver_ip string comment "接收人IP",
    receiver_account string comment "接收人账号",
    receiver_os string comment "接收人操作系统",
    receiver_phonetype string comment"接收人手机型号",
    receiver_network string comment "接收人网络类型",
    receiver_gps string comment"接收人的GPS定位",
    receiver_sex string comment"接收人性别",
    msg_type string comment"消息类型",
    distance string comment"双方距离",
    message string comment"消息内容",
    msg_day string comment"消息日期(日)",
    msg_hour string comment"消息时间(小时)",
    sender_lng double comment"经度",
    sender_lat double comment"纬度"
    );

开始清洗

INSERT OVERWRITE TABLE myhive.dgy_30w_etl
SELECT *,
to_date(msg_time) As msg_day,
HOUR(msg_time) As msg_hour,
SPLIT(sender_gps,',')[0] As sender_lng,
SPLIT(sender_gps,',')[1] As sender_lat
FROM myhive. dgy_30w
WHERE LENGTH(sender_gps)>0;

运行成功,查询

5. 指标

统计今日消息总量

CREATE TABLE IF NOT EXISTS myhive.tb_rs_total_msg_cnt 
COMMENT"每日消息总量" AS
SELECT msg_day,COUNT(*) AS total_msg_cnt
FROM myhive.dgy_30w_etl
GROUP BY msg_day;

统计每小时消息量、发送和接收用户数

CREATE TABLE IF NOT EXISTS myhive.tb_rs_hour_msg_cnt 
COMMENT"每小时消息量趋势" AS
SELECT msg_hour,
COUNT(*)AS total_msg_cnt,
COUNT(DISTINCT sender_account)AS sender_user_cnt,
COUNT(DISTINCT receiver_account)AS receiver_user_cnt
FROM myhive.dgy_30w_etl GROUP BY msg_hour;

统计今日各地区发送消息总量

CREATE TABLE IF NOT EXISTS myhive.tb_rs_loc_cnt
COMMENT"今日各地区发送消息总量"AS
SELECT
msg_day,sender_lng,sender_lat,sender_gps,
COUNT(*)AS total_msg_cnt FROM myhive.dgy_30w_etl 
GROUP BY msg_day,sender_lng,sender_lat,sender_gps;

统计今日发送和接收用户人数

CREATE TABLE IF NOT EXISTS myhive.tb_rs_user_cnt
COMMENT"今日发送消息人数、接收消息人数"AS
SELECT msg_day,
COUNT(DISTINCT sender_account)AS sender_user_cnt,
COUNT(DISTINCT receiver_account)AS receiver_user_cnt 
FROM myhive.dgy_30w_etl
GROUP BY msg_day;

统计发送消息条数最多的Top10用户

CREATE TABLE IF NOT EXISTS myhive.tb_rs_s_user_top10
COMMENT"发送消息条数最多的Top10用户"AS 
SELECT sender_name AS username,
COUNT(*)AS sender_msg_cnt 
FROM myhive.dgy_30w_etl
GROUP BY sender_name
ORDER BY sender_msg_cnt DESC
LIMIT 10;

统计接收消息条数最多的Top10用户

CREATE TABLE IF NOT EXISTS myhive.tb_rs_r_user_top10 
COMMENT"接收消息条数最多的Top10用户" AS 
SELECT receiver_name AS username,
COUNT(*)AS receiver_msg_cnt
FROM myhive.dgy_30w_etl
GROUP BY receiver_name
ORDER BY receiver_msg_cnt DESC
LIMIT 10;

统计发送人的手机型号分布情况

CREATE TABLE IF NOT EXISTS myhive.tb_rs_sender_phone 
COMMENT"发送人的手机型号分布"AS
SELECT sender_phonetype,
COUNT(sender_account)AS cnt 
FROM myhive.dgy_30w_etl
GROUP BY sender_phonetype;

统计发送人的手机操作系统分布

CREATE TABLE IF NOT EXISTS myhive.tb_rs_sender_os
COMMENT"发送人的手机操作系统分布"AS
SELECT sender_os,
COUNT(sender_account)AS cnt
FROM myhive.dgy_30w_etl
GROUP BY sender_os;

进入myhive数据库,查看创建的十个表

use myhive;

show tables;

6. 进入Fine BI数据中心

启动服务器

进入FineBI

新建数据集,把数据库表导入FinBI中

更新数据

新建分析主题

选择数据表

底栏选择组件,对相应表选择合适的图表,添加仪表板

在组件中给每个表选择合适的图例,适当调整样式

最终展示

标签: hadoop hive finebi

本文转载自: https://blog.csdn.net/m0_53894368/article/details/137580554
版权归原作者 冬瓜叶 所有, 如有侵权,请联系我们删除。

“基于Hadoop和Hive的聊天数据(FineBI)可视化分析”的评论:

还没有评论