一、介绍
鱼类识别系统。使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑鱼’, ‘鲢鱼’, ‘鲤鱼’, ‘鲫鱼’, ‘鲳鱼’, ‘鲷鱼’, ‘鲽鱼’, ‘鳊鱼’, ‘鳗鱼’, ‘黄鱼’, ‘黄鳝’, ‘黑鱼’, ‘龙头鱼’)图片作为数据集,然后使用TensorFlow搭建ResNet50算法网络模型,通过对数据集进行处理后进行模型迭代训练,得到一个识别精度较高的H5模型文件。并基于Django框架开发网页端平台,实现用户在网页上上传一张鱼类图片识别其名称。
二、效果图片
三、演示视频 and 完整代码
视频+代码:https://www.yuque.com/ziwu/yygu3z/faw6kga47czostik
四、TensorFlow图像分类介绍
TensorFlow是一个由Google开发的开源机器学习库,它被广泛应用于各种深度学习项目,尤其在图像分类和识别方面表现出色。在图像分类任务中,TensorFlow利用其强大的神经网络算法,能够训练模型识别和区分不同的图像和对象。
图像分类是一个将图像分配到不同类别(例如猫、狗、车等)的过程。TensorFlow通过使用卷积神经网络(CNN),一种专门用于处理图像的深度学习模型,有效地完成这一任务。CNN通过模拟人类视觉系统的工作原理来识别图像中的模式和特征,如边缘、形状和纹理。
在实践中,首先需要大量的图像数据集来训练模型。训练过程包括输入图像,让网络通过其层次结构提取特征,并使用这些特征来预测图像的类别。随着训练的进行,模型逐渐学会区分不同类别的图像。
下面是一个简单的TensorFlow图像分类示例代码。这个示例使用了TensorFlow的高级API——tf.keras,来构建一个简单的CNN模型,用于分类MNIST手写数字数据集:
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten
# 加载数据集(train_images, train_labels),(test_images, test_labels)= mnist.load_data()# 归一化图像数据
train_images = train_images.reshape((60000,28,28,1))/255.0
test_images = test_images.reshape((10000,28,28,1))/255.0# 构建模型
model = Sequential([
Conv2D(28, kernel_size=(3,3), input_shape=(28,28,1)),
Flatten(),
Dense(128, activation='relu'),
Dense(10, activation='softmax')])# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=10)# 评估模型
model.evaluate(test_images, test_labels)
在这段代码中,我们首先导入了必要的TensorFlow模块。然后,我们加载并准备了MNIST手写数字数据集,该数据集包含了大量的手写数字图像及其对应的标签。接着,我们构建了一个简单的CNN模型,包括卷积层、扁平化层和全连接层。之后,我们编译并训练模型,并在测试集上评估其性能。通过这个简单的例子,我们可以看到TensorFlow在图像分类任务上的强大和便利。
版权归原作者 子午 所有, 如有侵权,请联系我们删除。