0


如何根据Hive SQL代码生成Datahub数据集及血缘

需求

数据库(Postgres、Hive等)中的元数据(表信息)可以通过cli命令及ui界面的方式采集元数据信息到Datahub中,并配置表级与列级血缘。那么,SQL 查询语句(SQL脚本/SQL DLL)如何生成数据集及血缘呢,比如FineBI的数据集就是一段SQL查询语句。

分析

将SQL脚本/语句生成Datahub中的数据集及血缘,需要验证以下关键技术点:

  • 通过Python Emitter API生成数据集
  • 解析SQL脚本为Python Emitter API生成数据集,需要的输入结构体
  • 通过Python Emitter API生成表级血缘及列级血缘
  • 解析SQL脚本为Python Emitter API生成表级血缘,需要的输入结构体
  • 解析SQL脚本为Python Emitter API生成列级血缘,需要的输入结构体

环境

  • 安装 Datahub服务
  • 安装acryl-datahub==0.9.2.2
  • 安装sql-metadata==2.6.0

实验1:Python Emitter API生成数据集

代码https://github.com/datahub-project/datahub/blob/master/metadata-ingestion/examples/library/dataset_schema.py
运行:直接修改gms_server地址,运行即可。

实验2:解析SQL脚本为MetadataChangeProposalWrapper结构体

  • 解析SQL,提取列字段名,列字段类型(通过FineBI接口获取)

测试代码sql_fields.py

from sql_metadata import Parser

sql ="""
select
        id as ID
        , opp_header_id ID1
        , opp_code opp_code
        , order_line_id 订单行ID
        , order_line_code 订单行编码
        , SUBSTR(order_line_code, 0, INSTR(order_line_code, '-', 1, 2)-1) 订单编码
        , op_type 来源类型
        , qty 订单数量
        , dorn_qty 已退货数量
        , unit_price 单价
        , ((qty - dorn_qty) * unit_price) 应回款合计
        , total_amount 已回款合计
        , ((qty - dorn_qty) * unit_price - total_amount) 待回款合计 
        , total_amount 回款金额
        , last_upd_time 回款时间
        , remark 备注
        , is_enabled 是否生效
from
        dscsm_execute.csm_cs_allocate cca
where 1=1
and cca.is_enabled = '1' and cca.is_deleted = '0'

"""
parser = Parser(sql)
aliases = parser.columns_aliases_names
print(parser.columns_aliases_names)print(parser.columns)

运行结果如下:
在这里插入图片描述
我们可以按需要将上面提取的字段,传入MetadataChangeProposalWrapper结构体中SchemaFieldClass的fieldPath变量。

实验3:Python Emitter API生成表级血缘

代码https://github.com/datahub-project/datahub/blob/master/metadata-ingestion/examples/library/lineage_emitter_rest.py
运行:直接修改gms_server地址,运行即可。
注意事项

  • make_dataset_urn只是引用dataset数据集地址,如果dataset不存在,会默认创建只有数据集名的空数据集(字段名等信息为空)。
  • 使用该脚本创建表级别前,建议先通过CLI、UI界面、Python Emitter等导入Dataset信息。
  • 通过浏览器地址,获取已有元数据的urn 如下图所示:在这里插入图片描述

实验4:Python Emitter API生成字段级血缘

代码https://github.com/datahub-project/datahub/blob/master/metadata-ingestion/examples/library/lineage_emitter_dataset_finegrained.py
运行:直接修改gms_server地址,运行即可。
注意事项

  • make_dataset_urn只是引用dataset数据集地址,如果dataset不存在,会默认创建只有数据集名的空数据集(字段名等信息为空)。
  • 使用该脚本创建表级别前,建议先通过CLI、UI界面、Python Emitter等导入Dataset信息。
  • 通过浏览器地址,获取已有元数据的urn

解析SQL生成数据集、表级&列级血缘

  • 使用sql_metadata解析SQL Select脚本,获取字段信息,通过MetadataChangeProposalWrapper结构体构建数据集。
#!/usr/bin/python3# coding=utf-8# -----------------------------------------------------------------------------------# 日  期:2023.01.30# 作  者:dawsongzhao# 用  途:根据SQL SELECT生成Datahub数据集# 1. 使用时机:无法通过cli ingest从数据库抽取表元数据时,例如FineBI数据集,只是SQL代码。# 2. 注意事项:代码功能演示用,未考虑性能及编码规范# 3. 使用方法:python3 sql_select_to_datahub.py# 版本记录:# -----------------------------------------------------------------------------------from sql_metadata import Parser
from datahub.emitter.mce_builder import make_data_platform_urn, make_dataset_urn
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter
import datahub.emitter.mce_builder as builder

# Imports for metadata model classesfrom datahub.metadata.schema_classes import(
    AuditStampClass,
    ChangeTypeClass,
    DateTypeClass,
    OtherSchemaClass,
    SchemaFieldClass,
    SchemaFieldDataTypeClass,
    SchemaMetadataClass,
    StringTypeClass,)classSQLSelectToDatahub():def__init__(self):
        self._table_sql ="""
SELECT 
 v.evt_code             as "  事件编号 ",
 v.evt_expenses_code    as "费用单号",
 v.type_name            as "费用类型",
 v.duty_bill_amount     as "单据金额",
 v.duty_settle_amount   as "结算金额",
 v.duty_rational_amount as "合理金额",
 v.lack_amount          as "谈少金额",
 v.need_confirm_amount  as "待确认金额",
 v.exp_crt_time         as "费用创建时间",
 cc.cvte_year_month  as "费用单的归属年月",
 v.name                          as "  事件名称 ",
 v.status                        as "  单据状态 ",
 v.evt_class                     as "  事件分类 ",
 v.evt_level                     as "  事件级别 ",
 v.urgency_degree                as "  紧急程度 ",
 v.cust_code                     as "  客户 ",
 v.cus_name                      as "  客户名称 ",
 v.cust_corps                    as "  客户战队 ",
 v.board_no                      as "  板卡型号 ",
 v.problem_source                as "  问题来源 ",
 v.occur_stage                   as "  问题阶段 ",
 v.process_users                 as "  处理团队 ",
 v.service_user                  as "  客服 ",
 v.bu_id                         as "  事业部 ",
 v.crt_time                      as "  制单日期 ",
 v.fbk_item_code                 as "  物料料号 ",
 v.fbk_supplier                  as "  供应商 ",
 v.fbk_analyze                   as "  初步分析情况 ",
 v.is_analyze                    as "  是否有原因分析 ",
 v.analyze_date                  as "  原因分析日期 ",
 v.analyse_content_str           as "  原因分析内容 ",
 v.is_temp_plan                  as "  是否有临时措施 ",
 v.temp_plan_date                as "  临时措施日期 ",
 v.temp_plan_str                 as "  临时措施内容 ",
 v.factory                       as "  所属工厂 ",
 v.is_rework                     as "  是否返工 ",
 v.evt_type                      as "  事件类型 ",
 v.plan                          as "  方案 ",
 v.dis_range                     as "  禁用范围 ",
 v.dis_software_nums             as "  禁用软件数 ",
 v.dis_order_nums                as "  禁用订单数 ",
 v.is_able_hold_gary             as "  灰度是否可拦截 ",
 v.bu_type                       as "  事业部类型 ",
 v.error_class                   as "  失误分类 ",
 v.fty_fee                       as "  工厂返工费用 ",
 v.outsrc_fee                    as "  外包返工费用 ",
 v.claim_fee                     as "   客户索赔费用",
 v.experiment_fee                as "  内部实验费用 ",
 v.other_fee                     as "  其他损失费用 ",
 v.total_amount                  as "  总金额 ",
 v.submit_time                   as "  提交审核关闭时间 ",
 v.close_time                    as "  问题审核通过时间 ",
 --v.post                          as "  岗位分类 ",
 v.director_user                 as "  责任经理 ",
 v.dept_id                       as "  责任部门 ",
 v.dept_id_sub2                  as "  二级部门 ",
 v.dept_id_sub3                  as "  三级部门 ",
 v.rate                          as "  责任占比 ",
 v.why_status                    as "  根因状态 ",
 v.problem_liable                as "  问题责任人 ",
 v.error_type                    as "  根因失误分类 ",
 v.post_type                     as "  根因岗位分类 ",
 v.bu_code_search                as "  所属事业部 ",
 v.count_year                    as "  统计年份",
 v.count_month                   as "  统计月份",
 v.count_day                     as "  统计日期",
 v.count_year_month              as "  统计年月",
 v.cvte_year as "  归属年份",
 v.cvte_month as "  归属月份",
 v.cvte_date as "  归属日期",
 v.cvte_year_month               as "归属年月",
 v.w_insert_dt                   as "数仓处理时间",
 v.director_user_submit_time     as "责任经理提交时间",
 v.dept_fee                      as "责任部门费用"
from hive.bda_csm_part_main_evt_test_3 v
left JOIN hive.dim_date_d cc
on  to_char(exp_crt_time,''yyyymmdd'')= substr(cc.period_wid,1,10)
WHERE coalesce(status,'''') <> ''已作废''      
      """
        self.__table_name ='hive.bda_csm_part_main_evt_test_3'defgenerate_dataset(self):"""
          构建SQL数据集
        """
        field_list =[]try:for field in Parser(self._table_sql).columns_aliases_names:
                field_list.append(
                    SchemaFieldClass(
                        fieldPath=field,type=SchemaFieldDataTypeClass(type=StringTypeClass()),
                        nativeDataType="VARCHAR(50)",# use this to provide the type of the field in the source system's vernacular
                        description=field,
                        lastModified=AuditStampClass(
                            time=1640692800000, actor="urn:li:corpuser:ingestion"),))
            event = self.__generate_event(self.__table_name, self._table_sql, field_list)# Create rest emitter
            rest_emitter = DatahubRestEmitter(gms_server="http://10.10.10.10:8080")
            rest_emitter.emit(event)print("添加SQL数据集[{}]到Datahub".format(self.__table_name))except:print("解析SQL数据集{}失败".format(self.__table_name))def__generate_event(
            self,
            name_list,
            rawSchema_ddl,
            fields_list
    ):

        event: MetadataChangeProposalWrapper = MetadataChangeProposalWrapper(
            entityType="dataset",
            changeType=ChangeTypeClass.UPSERT,# 如果需要多级目录,就在name中使用点号分隔,一般建议,database.shcema.table
            entityUrn=make_dataset_urn(platform="postgres", name=name_list, env="PROD"),
            aspectName="schemaMetadata",
            aspect=SchemaMetadataClass(
                schemaName="customer_postgres",# not used
                platform=make_data_platform_urn("postgres"),# important <- platform must be an urn
                version=0,# when the source system has a notion of versioning of schemas, insert this in, otherwise leave as 0hash="",# when the source system has a notion of unique schemas identified via hash, include a hash, else leave it as empty string
                platformSchema=OtherSchemaClass(rawSchema=rawSchema_ddl),
                lastModified=AuditStampClass(
                    time=1640692800000, actor="urn:li:corpuser:ingestion"),
                fields=fields_list,),)return event

if __name__ =="__main__":
    fd = SQLSelectToDatahub()
    fd.generate_dataset()
  • datahub查看数据集:在这里插入图片描述在这里插入图片描述 如上图所示,此时数据集,lineage按钮查询不到血缘信息。
  • 修改以上脚本生成名为:hive.bda_csm_part_main_evt_test、hive.bda_csm_part_main_evt_test_1、hive.bda_csm_part_main_evt_test_2、hive.bda_csm_part_main_evt_test_3的数据集
  • 生成表级及字段级血缘
import datahub.emitter.mce_builder as builder
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter
from datahub.metadata.com.linkedin.pegasus2avro.dataset import(
    DatasetLineageType,
    FineGrainedLineage,
    FineGrainedLineageDownstreamType,
    FineGrainedLineageUpstreamType,
    Upstream,
    UpstreamLineage,)from datahub.metadata.schema_classes import ChangeTypeClass

defdatasetUrn(tbl):return builder.make_dataset_urn("postgres", tbl)deffldUrn(tbl, fld):return builder.make_schema_field_urn(datasetUrn(tbl), fld)# Lineage of fields in a dataset# c1      <-- unknownFunc(bar2.c1, bar4.c1)# c2      <-- myfunc(bar3.c2)# {c3,c4} <-- unknownFunc(bar2.c2, bar2.c3, bar3.c1)# c5      <-- unknownFunc(bar3)# {c6,c7} <-- unknownFunc(bar4)# note that the semantic of the "transformOperation" value is contextual.# In above example, it is regarded as some kind of UDF; but it could also be an expression etc.

fineGrainedLineages =[
    FineGrainedLineage(
        upstreamType=FineGrainedLineageUpstreamType.FIELD_SET,
        upstreams=[fldUrn("hive.bda_csm_part_main_evt_test_1","费用单号"), fldUrn("hive.bda_csm_part_main_evt_test_3","费用单号")],
        downstreamType=FineGrainedLineageDownstreamType.FIELD,
        downstreams=[fldUrn("hive.bda_csm_part_main_evt_test","费用单号")],),
    FineGrainedLineage(
        upstreamType=FineGrainedLineageUpstreamType.FIELD_SET,
        upstreams=[fldUrn("hive.bda_csm_part_main_evt_test_2","费用类型")],
        downstreamType=FineGrainedLineageDownstreamType.FIELD,
        downstreams=[fldUrn("hive.bda_csm_part_main_evt_test","费用类型")],
        confidenceScore=0.8,
        transformOperation="myfunc",),
    FineGrainedLineage(
        upstreamType=FineGrainedLineageUpstreamType.FIELD_SET,
        upstreams=[fldUrn("hive.bda_csm_part_main_evt_test_2","单据金额"), fldUrn("hive.bda_csm_part_main_evt_test_2","结算金额"), fldUrn("hive.bda_csm_part_main_evt_test_3","费用单号")],
        downstreamType=FineGrainedLineageDownstreamType.FIELD_SET,
        downstreams=[fldUrn("hive.bda_csm_part_main_evt_test","单据金额"), fldUrn("hive.bda_csm_part_main_evt_test","结算金额")],
        confidenceScore=0.7,),
    FineGrainedLineage(
        upstreamType=FineGrainedLineageUpstreamType.DATASET,
        upstreams=[datasetUrn("hive.bda_csm_part_main_evt_test_3")],
        downstreamType=FineGrainedLineageDownstreamType.FIELD,
        downstreams=[fldUrn("hive.bda_csm_part_main_evt_test","合理金额")],),# FineGrainedLineage(#     upstreamType=FineGrainedLineageUpstreamType.DATASET,#     upstreams=[datasetUrn("bar4")],#     downstreamType=FineGrainedLineageDownstreamType.FIELD_SET,#     downstreams=[fldUrn("bar", "c6"), fldUrn("bar", "c7")],# ),]# this is just to check if any conflicts with existing Upstream, particularly the DownstreamOf relationship
upstream = Upstream(dataset=datasetUrn("hive.bda_csm_part_main_evt_test_1"),type=DatasetLineageType.TRANSFORMED)

fieldLineages = UpstreamLineage(
    upstreams=[upstream], fineGrainedLineages=fineGrainedLineages
)

lineageMcp = MetadataChangeProposalWrapper(
    entityType="dataset",
    changeType=ChangeTypeClass.UPSERT,
    entityUrn=datasetUrn("hive.bda_csm_part_main_evt_test"),
    aspectName="upstreamLineage",
    aspect=fieldLineages,)# Create an emitter to the GMS REST API.
emitter = DatahubRestEmitter("http://10.10.10.10:8080")# Emit metadata!
emitter.emit_mcp(lineageMcp)

在这里插入图片描述

总结

本文简单演示了通过解析SQL代码,并调用Python Emitter API生成datahub数据集、表级、列级别血缘。该演示中还有一些问题没有涉及:

  • 如何自动识别SQL代码中字段的类型问题?
  • 如何识别Hive SQL代码的字段及类型?
  • 能否自动生成Hive SQL的表级及字段级血缘?

如文章:https://blog.csdn.net/zdsx1104/article/details/128808902 中介绍,在生产环境中已经实现FineBI报表-BI图表组件-BI数据-BI PG导出库-数据仓库(ods-dwd-dws-ads)端到端的表级及字段级血缘。有疑问的,欢迎留言沟通。

标签: hive sql 大数据

本文转载自: https://blog.csdn.net/zdsx1104/article/details/128883061
版权归原作者 DawsonSally 所有, 如有侵权,请联系我们删除。

“如何根据Hive SQL代码生成Datahub数据集及血缘”的评论:

还没有评论