1、Zookeeper 概述
1.1、Zookeeper 定义
zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目
1.2、Zookeeper 工作机制
Zookeeper是–个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些客户端做出相应的反应。
也就是说Zookeeper =文件系统+通知机制
1.3、Zookeeper 特点
- Zookeeper: 一个领导者(Leader) ,多个跟随者(Follower) 组成的集群
- Zookeeper集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器
- 全局数据一致:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的
- 更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出
- 数据更新原子性,一 次数据更新要么成功,要么失败
- 实时性,在一定时间范围内,Client能读到最新数据
1.4、Zookeeper 数据结构
ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。
每一个 ZNode默认 能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识
1.5、Zookeeper 应用场景:
提供的服务包括: 统一命名服务、统一配置管理、 统一集群管理、服务器节点动态上下线、软负载均衡等
统一命名服务
在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如: IP不容易记住,而域名容易记住
统一配置管理
- 分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是一致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上
- 配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper上的一个Znode。各个客户端服务器监听这个Znode。一旦Znode中的数据被修改,ZooKeeper将通知各个客户端服务器
统一集群管理
- 分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出一些调整
- ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper上的一个ZNode。监听这个ZNode可获取它的实时状态变化
服务器动态上下线
客户端能实时洞察到服务器上下线的变化
软负载均衡
在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求
Zookeeper 选举机制
Zookeeper集群角色
- Leader:处理集群的所有事务请求,集群中只有⼀个Leader。
- Follower:只能处理读请求,参与Leader选举。
- Observer:只能处理读请求,提升集群读的性能,但不能参与Leader选举。
Zookeeper四种节点状态
- Looking :选举状态。
- Following :Follower 节点(从节点)所处的状态。
- Leading :Leader 节点(主节点)所处状态。
- Observing:观察者节点所处的状态
● 第一次启动选举机制
a)服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票, 不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;
b)服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的( 服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持L00KING
c)服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING; .
d)服务器4启动,发起一次选举。此时服务器1,2,3已经不是L00KING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;
e)服务器5启动,同4一样当小弟。
非第一次启动选举机制
a)当ZooKeeper集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:
- 服务器初始化启动。
- 服务器运行期间无法和Leader保持连接。
b) 而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:
1.集群中本来就已经存在一个Leader.
对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和Leader机器建立连接,并进行状态同步即可.
2.集群中确实不存在Leader.
假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、 8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举.
选举Leader规则:
- EPOCH大的直接胜出
- EPOCH相同,事务id大的胜出
- 事务id相同,服务器id大的胜出
SID:服务器ID,用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致
ZXID:事务ID,ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的ZXID值不一定完全一致,这和ZooKeeper服务器对于客户端"更新请求”的处理逻辑速度有关。
Epoch:每个Leader任期的代号,没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加
2、部署 zookeeper 集群:
实验环境准备:
3台服务器:
192.168.99.50 192.168.99.51 192.168.99.53
1、安装前准备
#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
#安装JDK
yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
java -version 查看一下 一般默认安装好了
2.安装Zookeeper
#cd /opt
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin.tar.gz
cd /opt # 把安装包拖进去然后解压
tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz
mv apache-zookeeper-3.5.7-bin /usr/local/zookeeper-3.5.7
cd /usr/local/zookeeper-3.5.7/conf/
cp zoo_sample.cfg zoo.cfg
3.配置文件
vim zoo.cfg
#通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒
tickTime=2000
#Leader和Follower初始连接时能容忍的最多心跳数(tickTime的数量),这里表示为10*2s
initLimit=10
#Leader和Follower之间同步通信的超时时间,这里表示如果超过5*2s,Leader认 为Follwer死掉,并从服务器列表中删除Follwer
syncLimit=5
#修改,指定保存Zookeeper中的数据的目录,目录需要单独创建
dataDir=/usr/local/zookeeper-3.5.7/data
#添加, 指定存放日志的目录,目录需要单独创建
dataLogDir=/usr/local/zookeeper-3.5.7/logs
#客户端连接端口
clientPort=2181
#添加集群信息
server.1=192.168.99.50:3188:3288
server.2=192.168.99.51:3188:3288
server.3=192.168.99.53:3188:3288
#在每个节点上创建数据目录和日志目录
mkdir /usr/local/zookeeper-3.5.7/data
mkdir /usr/local/zookeeper-3.5.7/logs
#在每个节点的dataDir指定的目录下创建一个myid的文件
echo 1 > /usr/local/zookeeper-3.5.7/data/myid
echo 2 > /usr/local/zookeeper-3.5.7/data/myid
echo 3 > /usr/local/zookeeper-3.5.7/data/myid
#配置Zookeeper 启动脚本
vim /etc/init.d/zookeeper
#!/bin/bash
#chkconfig:2345 20 90
#description: Zookeeper Service Control Script
ZK_HOME='/usr/local/zookeeper-3.5.7'
case $1 in
start)
echo "-----zookeeper启动-----"
$ZK_HOME/bin/zkServer.sh start
;;
stop)
echo "----zookeeper停止-------"
$ZK_HOME/bin/zkServer.sh stop
;;
restart)
echo "----zookeeper重启-------"
$ZK_HOME/bin/zkServer.sh restart
;;
status)
echo "-----zookeeper状态------"
$ZK_HOME/bin/zkServer.sh status
;;
*)
echo "Usage: $0 {start|stop|restart|status}"
esac
**service管理服务 **
#设置开机自启
chmod +x /etc/init.d/zookeeper
chkconfig --add zookeeper
#分别启动 Zookeeper
service zookeeper start
#查看当前状态
service zookeeper status
3、KafKa
3.1、Kafka 定义
Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域
3.2、Kafka 简介
Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,
Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目
3.3、Kafka 的特性
- 高吞吐量、低延迟Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。
- 可扩展性kafka 集群支持热扩展
- 持久性、可靠性消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
- 容错性允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)
- 高并发支持数千个客户端同时读写
3.4、Kafka 系统架构
(1)Broker
一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。
(2)Topic
可以理解为一个队列,生产者和消费者面向的都是一个 topic。
类似于数据库的表名或者 ES 的 index
物理上不同 topic 的消息分开存储
(3)Partition
为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。
每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾。
Partation 数据路由规则:
- 指定了 partition,则直接使用;
- 未指定 partition但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 partition;
- partition和 key 都未指定,使用轮询选出一个 partition。
每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。
每个 partition 中的数据使用多个 segment 文件存储。
如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。
- broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
- 如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
- 如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。
分区的原因
● 方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
● 可以提高并发,因为可以以Partition为单位读写了。
(4)Leader
每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition。
(5)Follower
Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower。
(6)Replica
副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower。
(7)Producer
生产者即数据的发布者,该角色将消息发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中。
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition。
(8)Consumer
消费者可以从 broker 中读取数据。消费者可以消费多个 topic 中的数据。
(9)Consumer Group(CG)
消费者组,由多个 consumer 组成。
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组。
将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取。
消费者组之间互不影响。
(10)offset 偏移量
可以唯一的标识一条消息。
偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)。
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息。
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制。
消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)。
(11)Zookeeper
Kafka 通过 Zookeeper 来存储集群的 meta 信息。
由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中;从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets。
也就是说,zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的,消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获取offset,offset记录上一次消费的数据到哪里, 这样就可以接着下一条数据进行消费
4、部署 kafka 集群:
实验环境准备:基于zookeeper实验
3台服务器:
192.168.99.50 192.168.99.51 192.168.99.53
2.安装 Kafka
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka
#修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}
vim server.properties
broker.id=0 #21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
listeners=PLAINTEXT://192.168.19.100:9092 #31行,指定监听的IP和端口,可以修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3 #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8 #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400 #48行,发送套接字的缓冲区大小::
socket.receive.buffer.bytes=102400 #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600 #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1 #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1 #69行,用来恢复和清理data下数据的线程数量
log.retention.hours=168 #103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
log.segment.bytes=1073741824 #110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
zookeeper.connect=192.168.99.50:2181,192.168.99.51:2181,192.168.99.53:2181 #123行,配置连接Zookeeper集群地址
# 如果设备延迟高,可以将zookeeper的连接超时时间改高一些
zookeeper.connection.timeout.ms=50000
#修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin
source /etc/profile
#配置 Kafka 启动脚本
vim /etc/init.d/kafka
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)
echo "---------- Kafka 启动 ------------"
${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)
echo "---------- Kafka 停止 ------------"
${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)
$0 stop
$0 start
;;
status)
echo "---------- Kafka 状态 ------------"
count=$(ps -ef | grep kafka | egrep -cv "grep|$$")
if [ "$count" -eq 0 ];then
echo "kafka is not running"
else
echo "kafka is running"
fi
;;
*)
echo "Usage: $0 {start|stop|restart|status}"
esac
#设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka
#分别启动 Kafka
service kafka start
3.Kafka 命令行操作
创建topic
kafka-topics.sh --create --zookeeper 192.168.99.50:2181,192.168.99.51:2181,192.168.99.53:2181 --replication-factor 2 --partitions 3 --topic test
-------------------------------------------------------------------------------------
--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2
--partitions:定义分区数
--topic:定义 topic 名称
-------------------------------------------------------------------------------------
#查看当前服务器中的所有 topic
kafka-topics.sh --list --zookeeper 192.168.99.50:2181,192.168.99.51:2181,192.168.99.53:2181
#查看某个 topic 的详情
kafka-topics.sh --describe --zookeeper 192.168.99.50:2181,192.168.99.51:2181,192.168.99.53:2181
#发布消息
kafka-console-producer.sh --broker-list 192.168.19.100:9092,192.168.19.101:9092,192.168.19.102:9092 --topic test
#消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.19.100:9092,192.168.19.101:9092,192.168.19.102:9092 --topic test --from-beginning
kafka-console-consumer.sh --bootstrap-server 192.168.19.55:9092,192.168.19.56:9092,192.168.19.57:9092 --topic test1 --from-beginning
-------------------------------------------------------------------------------------
--from-beginning:会把主题中以往所有的数据都读取出来
-------------------------------------------------------------------------------------
#修改分区数
kafka-topics.sh --zookeeper 192.168.19.100:2181,192.168.19.101:2181,192.168.19.102:2181 --alter --topic test --partitions 6
#删除 topic
kafka-topics.sh --delete --zookeeper 192.168.19.100:2181,192.168.19.101:2181,192.168.19.102:2181 --topic topick3
5、Kafka 架构深入:
5.1、Kafka 工作流程及文件存储机制
- Kafka 中消息是以 topic 进行分类的,生产者生产消息,消费者消费消息,都是面向 topic 的。
- topic 是逻辑上的概念,而 partition 是物理上的概念,每个 partition 对应于一个 log 文件,该 log 文件中存储的就是 producer 生产的数据。Producer 生产的数据会被不断追加到该 log 文件末端,且每条数据都有自己的 offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个 offset,以便出错恢复时,从上次的位置继续消费。
- 由于生产者生产的消息会不断追加到 log 文件末尾,为防止 log 文件过大导致数据定位效率低下,Kafka 采取了分片和索引机制,将每个 partition 分为多个 segment。每个 segment 对应两个文件:“.index” 文件和 “.log” 文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,test 这个 topic 有三个分区, 则其对应的文件夹为 test-0、test-1、test-2。
- index 和 log 文件以当前 segment 的第一条消息的 offset 命名。
- “.index” 文件存储大量的索引信息,“.log” 文件存储大量的数据,索引文件中的元数据指向对应数据文件中 message 的物理偏移地址。
5.2、数据可靠性保证
为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后, 都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。
副本机制
1. AR(Assigned Replica,分配的副本)
AR 是指被分配给分区的副本集合。在 Kafka 中,每个分区都有一个 AR 集合,其中包含了分区的所有副本。AR 是在 Kafka 控制器节点进行计算和管理的,它决定了每个分区的副本分配策略和副本的分布情况。
主要作用:
- 副本分配: AR 确定了每个分区的副本分配策略,包括副本的数量、分布和位置等。AR 决定了哪些节点上有分区的副本,以及每个节点上分配了多少个副本。
- 负载均衡: AR 通过动态调整副本的分布,实现了集群的负载均衡。通过在不同节点上分配副本,AR 可以避免某些节点的负载过重,提高了系统的整体性能和稳定性。
2. ISR(In-Sync Replica,同步副本
ISR 是指与 Leader 副本保持数据同步的副本集合。在 Kafka 中,每个分区都有一个 ISR 集合,其中包含了与 Leader 副本保持数据同步的所有副本。ISR 是动态调整的,根据副本的同步状态和延迟情况而变化。
主要作用:
- 数据同步: ISR 确保了分区的所有副本与 Leader 副本保持数据同步。当消息被 Leader 副本确认接收后,ISR 中的副本也会逐渐复制消息,确保所有副本之间的数据一致性。
- 高可用性: ISR 中的副本可以快速接管分区的读写请求,提高了分区的高可用性。当 Leader 副本发生故障时,ISR 中的副本可以立即接管分区的服务,而无需等待数据复制完成。
3. OSR(Out-of-Sync Replica,不同步副本)
OSR 是指与 Leader 副本不保持数据同步的副本集合。在 Kafka 中,每个分区都有一个 OSR 集合,其中包含了与 Leader 副本数据不同步的副本。OSR 的存在是正常的,可能由于网络延迟、副本故障或其他原因导致副本与 Leader 副本之间的数据同步出现滞后。
主要作用:
- 故障检测: OSR 中的副本可能由于故障或其他原因导致与 Leader 副本的数据不同步。监控 OSR 中的副本状态可以帮助及时检测和处理副本的故障或异常情况。
- 动态调整: OSR 中的副本可以通过数据同步和复制来重新加入到 ISR 中,从而提高分区的可用性和性能。Kafka 控制器会根据副本的同步状态和延迟情况动态调整 ISR 和 OSR 的成员。正常情况下OSR集合为空
5.3、数据一致性问题
LEO(Log End Offset):每个副本最大的 offset;
HW(High Watermark):每个分区中已经复制到所有副本的消息的偏移量。指的是消费者能见到的最大的 offset,所有副本中最小的 LEO。
- follower 故障follower 发生故障后会被临时踢出 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合),待该 follower 恢复后,follower 会读取本地磁盘记录的上次的 HW,并将 log 文件高于 HW 的部分截取掉,从 HW 开始向 leader 进行同步。等该 follower 的 LEO 大于等于该 Partition 的 HW,即 follower 追上 leader 之后,就可以重新加入 ISR 了。
- leader 故障leader 发生故障之后,会从 ISR 中选出一个新的 leader, 之后,为保证多个副本之间的数据一致性,其余的 follower 会先将各自的 log 文件高于 HW 的部分截掉,然后从新的 leader 同步数据。
注:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复
5.4、ack 应答机制
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡选择。
当 producer 向 leader 发送数据时,可以通过 request.required.acks 参数来设置数据可靠性的级别:
- 0:这意味着producer无需等待来自broker的确认而继续发送下一批消息。这种情况下数据传输效率最高,但是数据可靠性确是最低的。当broker故障时有可能丢失数据。
- 1(默认配置):这意味着producer在ISR中的leader已成功收到的数据并得到确认后发送下一条message。如果在follower同步成功之前leader故障,那么将会丢失数据。
- -1(或者是all):producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成,可靠性最高。但是如果在 follower 同步完成后,broker 发送ack 之前,leader 发生故障,那么会造成数据重复。
三种机制性能依次递减,数据可靠性依次递增。
注:在 0.11 版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。在 0.11 及以后版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据, Server 端都只会持久化一条。
6、部署Filebeat+Kafka+ELK:
1.部署 Zookeeper+Kafka 集群
2.部署 Filebeat
cd /usr/local/filebeat
vim filebeat.yml
filebeat.prospectors:
- type: log
enabled: true
paths:
- /var/log/messages
- /var/log/*.log
......
#添加输出到 Kafka 的配置
output.kafka:
enabled: true
hosts: ["192.168.99.53:9092","192.168.99.54:9092","192.168.99.55:9092"] #指定 Kafka 集群配置
topic: "lpd" #指定 Kafka 的 topic
#启动 filebeat
./filebeat -e -c filebeat.yml
3.部署 ELK,在 Logstash 组件所在节点上新建一个 Logstash 配置文件
cd /etc/logstash/conf.d/
vim filebeat.conf
input {
kafka {
bootstrap_servers => "192.168.99.53:9092,192.168.99.54:9092,192.168.99.55:9092"
topics => "lpd"
type => "httpd_kafka"
codec => "json"
auto_offset_reset => "latest"
decorate_events => true
}
}
output {
elasticsearch {
hosts => ["192.168.99.50:9200"]
index => "lpd-%{+YYYY.MM.dd}"
}
stdout {
codec => rubydebug
}
}
#启动 logstash
logstash -f filebeat.conf
4.浏览器访问 http://192.168.80.30:5601 登录 Kibana,单击“Create Index Pattern”按钮添加索引“filebeat-*”,单击 “create” 按钮创建,单击 “Discover” 按钮可查看图表信息及日志信息。
版权归原作者 byyffa 所有, 如有侵权,请联系我们删除。