0


毕设开源 深度学习交通标志识别系统(源码+论文)

文章目录

0 前言

🔥这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 毕业设计 深度学习交通标志识别系统(源码+论文)

🥇学长这里给一个题目综合评分(每项满分5分)

难度系数:3分
工作量:3分
创新点:4分

🧿 项目分享:见文末!

1 项目运行效果

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

视频效果:

毕业设计 深度学习交通标志识别系统

2.算法原理

整个互联网基本没有国内交通标志识别的开源项目(都是国外的),今天学长分享一个中国版本的实时交通标志识别项目,非常适合作为毕业设计~

这里学长做一个大致的demo讲解项目的大致原理,作为参考,实际项目要相对复杂。

在这里插入图片描述

2.1 算法简介

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

2.2网络架构

在这里插入图片描述

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

2.3 关键代码

classDetect(nn.Module):
    stride =None# strides computed during build
    onnx_dynamic =False# ONNX export parameterdef__init__(self, nc=80, anchors=(), ch=(), inplace=True):# detection layersuper().__init__()
        self.nc = nc  # number of classes
        self.no = nc +5# number of outputs per anchor
        self.nl =len(anchors)# number of detection layers
        self.na =len(anchors[0])//2# number of anchors
        self.grid =[torch.zeros(1)]* self.nl  # init grid
        self.anchor_grid =[torch.zeros(1)]* self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl,-1,2))# shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na,1)for x in ch)# output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)defforward(self, x):
        z =[]# inference outputfor i inrange(self.nl):
            x[i]= self.m[i](x[i])# conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i]= x[i].view(bs, self.na, self.no, ny, nx).permute(0,1,3,4,2).contiguous()ifnot self.training:# inferenceif self.onnx_dynamic or self.grid[i].shape[2:4]!= x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i]= self._make_grid(nx, ny, i)

                y = x[i].sigmoid()if self.inplace:
                    y[...,0:2]=(y[...,0:2]*2-0.5+ self.grid[i])* self.stride[i]# xy
                    y[...,2:4]=(y[...,2:4]*2)**2* self.anchor_grid[i]# whelse:# for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy =(y[...,0:2]*2-0.5+ self.grid[i])* self.stride[i]# xy
                    wh =(y[...,2:4]*2)**2* self.anchor_grid[i]# wh
                    y = torch.cat((xy, wh, y[...,4:]),-1)
                z.append(y.view(bs,-1, self.no))return x if self.training else(torch.cat(z,1), x)def_make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__,'1.10.0'):# torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv),2).expand((1, self.na, ny, nx,2)).float()
        anchor_grid =(self.anchors[i].clone()* self.stride[i]) \
            .view((1, self.na,1,1,2)).expand((1, self.na, ny, nx,2)).float()return grid, anchor_grid

classModel(nn.Module):def__init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):# model, input channels, number of classessuper().__init__()ifisinstance(cfg,dict):
            self.yaml = cfg  # model dictelse:# is *.yamlimport yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            withopen(cfg, encoding='ascii', errors='ignore')as f:
                self.yaml = yaml.safe_load(f)# model dict# Define model
        ch = self.yaml['ch']= self.yaml.get('ch', ch)# input channelsif nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc']= nc  # override yaml valueif anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors']=round(anchors)# override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])# model, savelist
        self.names =[str(i)for i inrange(self.yaml['nc'])]# default names
        self.inplace = self.yaml.get('inplace',True)# Build strides, anchors
        m = self.model[-1]# Detect()ifisinstance(m, Detect):
            s =256# 2x min stride
            m.inplace = self.inplace
            m.stride = torch.tensor([s / x.shape[-2]for x in self.forward(torch.zeros(1, ch, s, s))])# forward
            m.anchors /= m.stride.view(-1,1,1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()# only run once# Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')defforward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x)# augmented inference, Nonereturn self._forward_once(x, profile, visualize)# single-scale inference, traindef_forward_augment(self, x):
        img_size = x.shape[-2:]# height, width
        s =[1,0.83,0.67]# scales
        f =[None,3,None]# flips (2-ud, 3-lr)
        y =[]# outputsfor si, fi inzip(s, f):
            xi = scale_img(x.flip(fi)if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]# forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)# clip augmented tailsreturn torch.cat(y,1),None# augmented inference, traindef_forward_once(self, x, profile=False, visualize=False):
        y, dt =[],[]# outputsfor m in self.model:if m.f !=-1:# if not from previous layer
                x = y[m.f]ifisinstance(m.f,int)else[x if j ==-1else y[j]for j in m.f]# from earlier layersif profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)# run
            y.append(x if m.i in self.save elseNone)# save outputif visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)return x

    def_descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:
            p[...,:4]/= scale  # de-scaleif flips ==2:
                p[...,1]= img_size[0]- p[...,1]# de-flip udelif flips ==3:
                p[...,0]= img_size[1]- p[...,0]# de-flip lrelse:
            x, y, wh = p[...,0:1]/ scale, p[...,1:2]/ scale, p[...,2:4]/ scale  # de-scaleif flips ==2:
                y = img_size[0]- y  # de-flip udelif flips ==3:
                x = img_size[1]- x  # de-flip lr
            p = torch.cat((x, y, wh, p[...,4:]),-1)return p

    def_clip_augmented(self, y):# Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g =sum(4** x for x inrange(nl))# grid points
        e =1# exclude layer count
        i =(y[0].shape[1]// g)*sum(4** x for x inrange(e))# indices
        y[0]= y[0][:,:-i]# large
        i =(y[-1].shape[1]// g)*sum(4**(nl -1- x)for x inrange(e))# indices
        y[-1]= y[-1][:, i:]# smallreturn y

    def_profile_one_layer(self, m, x, dt):
        c =isinstance(m, Detect)# is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy()if c else x,), verbose=False)[0]/1E9*2if thop else0# FLOPs
        t = time_sync()for _ inrange(10):
            m(x.copy()if c else x)
        dt.append((time_sync()- t)*100)if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s}{'GFLOPs':>10s}{'params':>10s}{'module'}")
        LOGGER.info(f'{dt[-1]:10.2f}{o:10.2f}{m.np:10.0f}{m.type}')if c:
            LOGGER.info(f"{sum(dt):10.2f}{'-':>10s}{'-':>10s}  Total")def_initialize_biases(self, cf=None):# initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]# Detect() modulefor mi, s inzip(m.m, m.stride):# from
            b = mi.bias.view(m.na,-1)# conv.bias(255) to (3,85)
            b.data[:,4]+= math.log(8/(640/ s)**2)# obj (8 objects per 640 image)
            b.data[:,5:]+= math.log(0.6/(m.nc -0.999999))if cf isNoneelse torch.log(cf / cf.sum())# cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def_print_biases(self):
        m = self.model[-1]# Detect() modulefor mi in m.m:# from
            b = mi.bias.detach().view(m.na,-1).T  # conv.bias(255) to (3,85)
            LOGGER.info(('%6g Conv2d.bias:'+'%10.3g'*6)%(mi.weight.shape[1],*b[:5].mean(1).tolist(), b[5:].mean()))# def _print_weights(self):#     for m in self.model.modules():#         if type(m) is Bottleneck:#             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weightsdeffuse(self):# fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')for m in self.model.modules():ifisinstance(m,(Conv, DWConv))andhasattr(m,'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)# update convdelattr(m,'bn')# remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()return self

    defautoshape(self):# add AutoShape module
        LOGGER.info('Adding AutoShape... ')
        m = AutoShape(self)# wrap model
        copy_attr(m, self, include=('yaml','nc','hyp','names','stride'), exclude=())# copy attributesreturn m

    definfo(self, verbose=False, img_size=640):# print model information
        model_info(self, verbose, img_size)def_apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self =super()._apply(fn)
        m = self.model[-1]# Detect()ifisinstance(m, Detect):
            m.stride = fn(m.stride)
            m.grid =list(map(fn, m.grid))ifisinstance(m.anchor_grid,list):
                m.anchor_grid =list(map(fn, m.anchor_grid))return self

defparse_model(d, ch):# model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}{'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na =(len(anchors[0])//2)ifisinstance(anchors,list)else anchors  # number of anchors
    no = na *(nc +5)# number of outputs = anchors * (classes + 5)

    layers, save, c2 =[],[], ch[-1]# layers, savelist, ch outfor i,(f, n, m, args)inenumerate(d['backbone']+ d['head']):# from, number, module, args
        m =eval(m)ifisinstance(m,str)else m  # eval stringsfor j, a inenumerate(args):try:
                args[j]=eval(a)ifisinstance(a,str)else a  # eval stringsexcept NameError:pass

        n = n_ =max(round(n * gd),1)if n >1else n  # depth gainif m in[Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
            c1, c2 = ch[f], args[0]if c2 != no:# if not output
                c2 = make_divisible(c2 * gw,8)

            args =[c1, c2,*args[1:]]if m in[BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)# number of repeats
                n =1elif m is nn.BatchNorm2d:
            args =[ch[f]]elif m is Concat:
            c2 =sum(ch[x]for x in f)elif m is Detect:
            args.append([ch[x]for x in f])ifisinstance(args[1],int):# number of anchors
                args[1]=[list(range(args[1]*2))]*len(f)elif m is Contract:
            c2 = ch[f]* args[0]**2elif m is Expand:
            c2 = ch[f]// args[0]**2else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args)for _ inrange(n)))if n >1else m(*args)# module
        t =str(m)[8:-2].replace('__main__.','')# module type
        np =sum(x.numel()for x in m_.parameters())# number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}{t:<40}{str(args):<30}')# print
        save.extend(x % i for x in([f]ifisinstance(f,int)else f)if x !=-1)# append to savelist
        layers.append(m_)if i ==0:
            ch =[]
        ch.append(c2)return nn.Sequential(*layers),sorted(save)

3 数据集处理

中国交通标志检测数据集CCTSDB,由长沙理工大学提供,包括上万张有标注的图片

推荐只使用前4000张照片,因为后面有很多张图片没有标注,需要一张一张的删除,太过于麻烦,所以尽量用前4000张图片,没有标注的图片比较少,而且对于一般网络来说训练4000张图片已经可以满足要求

3.1 VOC格式介绍

VOC格式主要包含三个文件夹Annotations,ImageSets,JPEGImages,主要适用于faster-rcnn等模型的训练,ImageSets下面有一个Main的文件夹,如下图,一定按照这个名字和格式建好文件夹:

  • Annotations:这里是存放你对所有数据图片做的标注,每张照片的标注信息必须是xml格式。
  • JPEGImages:用来保存你的数据图片,一定要对图片进行编号,一般按照voc数据集格式,采用六位数字编码,如000001.jpg、000002.jpg等。
  • ImageSets:该文件下有一个main文件,main文件下有四个txt文件,分别是train.txt、test.txt、trainval.txt、val.txt,里面都是存放的图片号码。

在这里插入图片描述

3.2 将中国交通标志检测数据集CCTSDB数据转换成VOC数据格式

将标注的数据提取出来并且排序,并将里面每一行分割成一个文件

在这里插入图片描述

3.3 手动标注数据集

如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。

以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,通过pip指令即可安装,相关教程可网上搜索

pip install labelimg

在这里插入图片描述

4 模型训练

修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

篇幅有限,更多详细设计见设计论文

5 最后

项目包含内容

在这里插入图片描述

完整详细设计论文

在这里插入图片描述

🧿 项目分享:见文末!


本文转载自: https://blog.csdn.net/laafeer/article/details/142870624
版权归原作者 laafeer 所有, 如有侵权,请联系我们删除。

“毕设开源 深度学习交通标志识别系统(源码+论文)”的评论:

还没有评论