需要数据集和源码请点赞关注收藏后评论区留言~~~
一、数据集简介
我们将使用Cora数据集。
该数据集共2708个样本点,每个样本点都是一篇科学论文,所有样本点被分为7个类别,类别分别是1)基于案例;2)遗传算法;3)神经网络;4)概率方法;5)强化学习;6)规则学习;7)理论
每篇论文都由一个1433维的词向量表示,所以,每个样本点具有1433个特征。词向量的每个元素都对应一个词,且该元素只有0或1两种取值。取0表示该元素对应的词不在论文中,取1表示在论文中。所有的词来源于一个具有1433个词的字典。
每篇论文都至少引用了一篇其他论文,或者被其他论文引用,也就是样本点之间存在联系,没有任何一个样本点与其他样本点完全没联系。如果将样本点看作图中的点,则这是一个连通的图,不存在孤立点。
数据集主要文件有两个:cora.cites, cora.content。其中,cora.content包含了2708个样本的具体信息,每行代表一个论文样本,格式为
<论文id> <由01组成的1433维特征> <论文类别(label)>
总的来说,如果将论文当作“图”的节点,则引用关系则为“图”的边,论文节点信息和引用关系共同构成了图数据。本次实验,我们将利用这些信息,对论文所属的类别进行预测,完成关于论文类别的分类任务。
二、图神经网络与图卷积神经网络简介
图神经网络(Graph Neural Networks, GNN)作为新的人工智能学习模型,可以将实际问题看作图数据中节点之间的连接和消息传播问题,对节点之间的依赖关系进行建模,挖掘传统神经网络无法分析的非欧几里得空间数据的潜在信息。在自然语言处理、计算机视觉、生物化学等领域中,图神经网络得到广泛的应用,并发挥着重要作用。
图卷积神经网络(Graph Convolutional Networks, GCN)是目前主流的图神经网络分支,分类任务则是机器学习中的常见任务。我们将利用GCN算法完成分类任务,进一步体会理解图神经网络工作的原理、GCN的构建实现过程,以及如何将GCN应用于分类任务。
三、运行效果
如下图 可见随着训练次数的增加,损失率在下降,精确度在上升,大概在200次左右收敛。
四、部分源码
主测试类代码如下
from __future__ import division
from __future__ import print_function
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import time
import argparse
import numpy as np
from torch.utils.data import DataLoader
import torch
import torch.nn.functional as F
import torch.optim as optim
from utils import load_data, accuracy
from models import GCN
import matplotlib.pyplot as plt
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=300,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
.manual_seed(args.seed)
# Load data
adj, features, labels, idx_train, idx_val, idx_test = load_data()
# Model and optimizer
model = GCN(nfeat=features.shape[1],
nhid=args.hidden,
nclass=labels.max().item() + 1,
dropout=args.dropout)
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
if args.cuda:
model.cuda()
features = features.cuda()
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
Loss_list = []
accval=[]
def train(epoch):
t=time.time()
model.train()
optimizer.zero_grad()
output=model(features,adj)
loss_train=F.nll_loss(output[idx_train],labels[idx_train])
acc_train=accuracy(output[idx_train],labels[idx_train])
loss_train.backward()
optimizer.step()
if not args.fastmode:
model.eval()
output=model(features,adj)
loss_val=F.nll_loss(output[idx_val],labels[idx_val])
acc_val=accuracy(output[idx_val],labels[idx_val])
print('Epoch:{:04d}'.format(epoch+1),
'loss_train:{:.4f}'.format(loss_train.item()),
'acc_train:{:.4f}'.format(acc_train.item()),
'loss_val:{:.4f}'.format(loss_val.item()),
'acc_val:{:.4f}'.format(acc_val.item()),
'time:{:.4f}s'.format(time.time()-t))
Loss_list.append(loss_train.item())
Accuracy_list.append(acc_train.item())
lossval.append(loss_val.item())
accval.append(acc_val.item())
def test():
model.eval()
output = model(features, adj)
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
acc=acc_test.detach().numpy()
loss=loss_test.detach().numpy()
print(type(loss_test))
print(type(acc_test))
# 定义两个数组
# Train model
t_total = time.time()
for epoch in range(args.epochs):
train(epoch)
print("Optimization Finished!")
printal time elapsed: {:.4f}s".format(time.time() - t_total))
'''
plt.plot([i for i in range(len(Loss_list))],Loss_list)
pplot([i for i in range(len(Accuracy_list))],Accuracy_list)
'''
plt.plot([i for i in range(len(lossval))],lossval)
plot([i for i in range(len(accval))],accval)
print(type(Loss_list))
print(type(Accuracy_list))
#plt.plot([i for i in range(len(Accuracy_list),Accuracy_list)])
plt.show()
# Testing
test()
模型类如下
import torch.nn as nn
import torch.nn.functional as F
from layers import GraphConvolution
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
on(nhid, nclass)
self.dropout = dropout
def forward(self, x, adj):
x=F.relu(self.gc1(x,adj))
x=F.dropout(x,self.dropout,training=self.training)
x=self.gc2(x,adj)
return F.log_softmax(x,dim=1)
layer类如下
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features=in_features
self.out_features=out_features
self.weight=Parameter(torch.FloatTensor(in_features,out_features))
if bias:
self.bias=Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias',None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support=torch.mm(input,self.weight)
output=torch.spmm(adj,support)
if self.bias is not None:
return output+self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
util类如下
import numpy as np
import scipy.sparse as sp
import torch
def encode_onehot(labels):
classes = set(labels)
classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
enumerate(classes)}
labels_onehot = np.array(list(map(classes_dict.get, labels)),
dtype=np.int32)
return labels_onehot
def load_data(path="data/cora/", dataset="cora"):
"""Load citation network dataset (cora only for now)"""
print('Loading {} dataset...'.format(dataset))
idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset),
dtype=np.dtype(str))
features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
labels = encode_onehot(idx_features_labels[:, -1])
# build graph
idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
idx_map = {j: i for i, j in enumerate(idx)}
edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset),
dtype=np.int32)
edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
dtype=np.int32).reshape(edges_unordered.shape)
adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),
shape=(labels.shape[0], labels.shape[0]),
dtype=np.float32)
# build symmetric adjacency matrix
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
features = normalize(features)
adj = normalize(adj + sp.eye(adj.shape[0]))
idx_train = range(140)
idx_val = range(200, 500)
idx_test = range(500, 1500)
features = torch.FloatTensor(np.array(features.todense()))
labels = torch.LongTensor(np.where(labels)[1])
adj = sparse_mx_to_torch_sparse_tensor(adj)
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
return adj, features, labels, idx_train, idx_val, idx_test
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
de_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
创作不易 觉得有帮助请点赞关注收藏~~~
版权归原作者 showswoller 所有, 如有侵权,请联系我们删除。