0


RabbitMQ 面试题

什么是RabbitMQ?

RabbitMQ是一款开源的,Erlang编写的,基于AMQP协议的消息中间件 AMQP,即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同的开发语言等条件的限制。

RabbitMQ 的使用场景

(1)服务间异步通信

(2)顺序消费

(3)定时任务

(4)请求削峰

RabbitMQ基本概念

Broker: 简单来说就是消息队列服务器实体

Exchange: 消息交换机,它指定消息按什么规则,路由到哪个队列

Queue: 消息队列载体,每个消息都会被投入到一个或多个队列

Binding: 绑定,它的作用就是把exchange和queue按照路由规则绑定起来

Routing Key: 路由关键字,exchange根据这个关键字进行消息投递

VHost: vhost 可以理解为虚拟 broker ,即 mini-RabbitMQ server。其内部均含有独立的 queue、exchange 和 binding 等,但最最重要的是,其拥有独立的权限系统,可以做到 vhost 范围的用户控制。当然,从 RabbitMQ 的全局角度,vhost 可以作为不同权限隔离的手段(一个典型的例子就是不同的应用可以跑在不同的 vhost 中)。

Producer: 消息生产者,就是投递消息的程序

Consumer: 消息消费者,就是接受消息的程序

Channel: 消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务

由Exchange、Queue、RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。

RabbitMQ的运行原理

Broker:接收和分发消息的应用,消息队列服务进程,此进程包括两个部分:Exchange和Queue。RabbitMQ Server就是Message Broker。

Virtual Host:虚拟主机,用于逻辑隔离。一个虚拟主机里面可以有若干个Exchange和Queue,同一个虚拟主机里面不能有相同名称的Exchange 或 Queue。

Exchange:消息交换机,作用是接收来自生产者的消息,并根据路由键转发消息到所绑定的队列。

Queue:即队列,RabbitMQ内部用于存储消息的对象,是真正用存储消息的结构,在生产端,生产者的消息最终发送到指定队列,而消费者也是通过订阅某个队列,达到获取消息的目的。

Binding:Binding是一种操作,其作用是建立消息从Exchange转发到Queue的规则,在进行Exchange与Queue的绑定时,需要指定一个BindingKey,Binding操作一般用于RabbitMQ的路由工作模式和主题工作模式。

Connection:Connection就是一个TCP的连接,Producer和Consumer都是通过TCP连接到RabbitMQ Server的。

Channel:信道,多路复用连接中的一条独立的双向数据流通道。是建立在上述的TCP连接中,因为建立TCP Connection的开销将是巨大的,所以其是为了节省Rabbitmq开销;

Producer:消息生产者,即生产方客户端,生产方客户端将消息发送

Consumer:消息消费者,即消费方客户端,接收MQ转发的消息。

RabbitMQ的工作模式

simple模式(即最简单的收发模式)

1.消息产生消息,将消息放入队列

2.消息的消费者(consumer) 监听 消息队列,如果队列中有消息,就消费掉,消息被拿走后,自动从队列中删除(隐患 消息可能没有被消费者正确处理,已经从队列中消失了,造成消息的丢失,这里可以设置成手动的ack,但如果设置成手动ack,处理完后要及时发送ack消息给队列,否则会造成内存溢出)。

work工作模式(资源的竞争)

消息产生者将消息放入队列消费者可以有多个,消费者1,消费者2同时监听同一个队列,消息被消费。C1 C2共同争抢当前的消息队列内容,谁先拿到谁负责消费消息(隐患:高并发情况下,默认会产生某一个消息被多个消费者共同使用,可以设置一个开关(syncronize) 保证一条消息只能被一个消费者使用)。

publish/subscribe发布订阅(共享资源)

1、每个消费者监听自己的队列;

2、生产者将消息发给broker,由交换机将消息转发到绑定此交换机的每个队列,每个绑定交换机的队列都将接收到消息。

routing路由模式

1.消息生产者将消息发送给交换机按照路由判断,路由是字符串(info) 当前产生的消息携带路由字符(对象的方法),交换机根据路由的key,只能匹配上路由key对应的消息队列,对应的消费者才能消费消息;

2.根据业务功能定义路由字符串

3.从系统的代码逻辑中获取对应的功能字符串,将消息任务扔到对应的队列中。

4.业务场景:error 通知;EXCEPTION;错误通知的功能;传统意义的错误通知;客户通知;利用key路由,可以将程序中的错误封装成消息传入到消息队列中,开发者可以自定义消费者,实时接收错误;

topic 主题模式(路由模式的一种)

1.星号井号代表通配符

2.星号代表多个单词,井号代表一个单词

3.路由功能添加模糊匹配

4.消息产生者产生消息,把消息交给交换机

5.交换机根据key的规则模糊匹配到对应的队列,由队列的监听消费者接收消息消费

(在我的理解看来就是routing查询的一种模糊匹配,就类似sql的模糊查询方式)

RabbitMQ 四种交换机类型

Direct Exchange : 直连交换机

Fanout Exchange : 扇形交换机

Topic Exchange : 主题交换机

Headers Exchange : 首部交换机

如何保证RabbitMQ消息的顺序性?

拆分多个 queue,每个 queue 一个 consumer,就是多一些 queue 而已,确实是麻烦点;或者就一个 queue 但是对应一个 consumer,然后这个 consumer 内部用内存队列做排队,然后分发给底层不同的 worker 来处理。

消息如何分发?

若该队列至少有一个消费者订阅,消息将以循环(round-robin)的方式发送给消费者。每条消息只会分发给一个订阅的消费者(前提是消费者能够正常处理消息并进行确认)。通过路由可实现多消费的功能。

消息怎么路由?

消息提供方->路由->一至多个队列消息发布到交换器时,消息将拥有一个路由键(routing key),在消息创建时设定。通过队列路由键,可以把队列绑定到交换器上。消息到达交换器后,RabbitMQ 会将消息的路由键与队列的路由键进行匹配(针对不同的交换器有不同的路由规则);

常用的交换器主要分为一下三种

Fanout:如果交换器收到消息,将会广播到所有绑定的队列上

Direct:如果路由键完全匹配,消息就被投递到相应的队列

Topic:可以使来自不同源头的消息能够到达同一个队列。 使用 topic 交换器时,可以使用通配符

消息基于什么传输?

由于 TCP 连接的创建和销毁开销较大,且并发数受系统资源限制,会造成性能瓶颈。RabbitMQ 使用信道的方式来传输数据。信道是建立在真实的 TCP 连接内的虚拟连接,且每条 TCP 连接上的信道数量没有限制。

如何保证消息不被重复消费?或者说,如何保证消息消费时的幂等性?

先说为什么会重复消费:正常情况下,消费者在消费消息的时候,消费完毕后,会发送一个确认消息给消息队列,消息队列就知道该消息被消费了,就会将该消息从消息队列中删除;

但是因为网络传输等等故障,确认信息没有传送到消息队列,导致消息队列不知道自己已经消费过该消息了,再次将消息分发给其他的消费者。

针对以上问题,一个解决思路是:保证消息的唯一性,就算是多次传输,不要让消息的多次消费带来影响;保证消息等幂性;

比如:在写入消息队列的数据做唯一标识,消费消息时,根据唯一标识判断是否消费过;

假设你有个系统,消费一条消息就往数据库里插入一条数据,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下是否已经消费过了,若是就直接扔了,这样不就保留了一条数据,从而保证了数据的正确性。

比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update 一下好吧。

比如你是写 Redis,那没问题了,反正每次都是 set,天然幂等性。

比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的 id,类似订单 id 之类的东西,然后你这里消费到了之后,先根据这个 id 去比如 Redis 里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个 id 写 Redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。

比如基于数据库的唯一键来保证重复数据不会重复插入多条。因为有唯一键约束了,重复数据插入只会报错,不会导致数据库中出现脏数据。

如何确保消息正确地发送至 RabbitMQ? 如何确保消息接收方消费了消息?

将信道设置成 confirm 模式(发送方确认模式),则所有在信道上发布的消息都会被指派一个唯一的 ID。

一旦消息被投递到目的队列后,或者消息被写入磁盘后(可持久化的消息),信道会发送一个确认给生产者(包含消息唯一 ID)。

如果 RabbitMQ 发生内部错误从而导致消息丢失,会发送一条 nack(notacknowledged,未确认)消息。

发送方确认模式是异步的,生产者应用程序在等待确认的同时,可以继续发送消息。当确认消息到达生产者应用程序,生产者应用程序的回调方法就会被触发来处理确认消息。

接收方确认机制

消费者接收每一条消息后都必须进行确认(消息接收和消息确认是两个不同操作)。只有消费者确认了消息,RabbitMQ 才能安全地把消息从队列中删除。

这里并没有用到超时机制,RabbitMQ 仅通过 Consumer 的连接中断来确认是否需要重新发送消息。也就是说,只要连接不中断,RabbitMQ 给了 Consumer 足够长的时间来处理消息。保证数据的最终一致性;

下面罗列几种特殊情况

如果消费者接收到消息,在确认之前断开了连接或取消订阅,RabbitMQ 会认为消息没有被分发,然后重新分发给下一个订阅的消费者。(可能存在消息重复消费的隐患,需要去重)

如果消费者接收到消息却没有确认消息,连接也未断开,则 RabbitMQ 认为该消费者繁忙,将不会给该消费者分发更多的消息。

如何保证RabbitMQ消息的可靠传输?

消息不可靠的情况可能是消息丢失,劫持等原因;

丢失又分为:生产者丢失消息、消息列表丢失消息、消费者丢失消息;

生产者丢失消息:从生产者弄丢数据这个角度来看,RabbitMQ提供 transaction 和 confirm 模式来确保生产者不丢消息;

transaction机制就是说:发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事务就会回滚(channel.txRollback()),如果发送成功则提交事务(channel.txCommit())。然而,这种方式有个缺点:吞吐量下降;

confirm模式用的居多:一旦channel进入confirm模式,所有在该信道上发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后;

rabbitMQ就会发送一个ACK给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了;

如果rabbitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。

消息队列丢数据:消息持久化。

处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。

这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。

这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。

那么如何持久化呢?

这里顺便说一下吧,其实也很容易,就下面两步

将queue的持久化标识durable设置为true,则代表是一个持久的队列

发送消息的时候将deliveryMode=2

这样设置以后,即使rabbitMQ挂了,重启后也能恢复数据

消费者丢失消息:消费者丢数据一般是因为采用了自动确认消息模式,改为手动确认消息即可!

消费者在收到消息之后,处理消息之前,会自动回复RabbitMQ已收到消息;

如果这时处理消息失败,就会丢失该消息;

解决方案:处理消息成功后,手动回复确认消息。

死信

什么是死信?

无法被消费的消息,称为死信

为什么会产生死信

消息 TTL(Time To Live)过期

队列达到了最大长度,无法再添加消息到 MQ 中了

消息被拒,并且没有重新入队(basic.reject || basicNack)&& (requeue=false)

死信队列使用场景

一般用在较为重要的业务队列中,确保未被正确消费的消息不被丢弃,一般发生消费异常可能原因主要有由于消息信息本身存在错误导致处理异常,处理过程中参数校验异常,或者因网络波动导致的查询异常等等,当发生异常时,当然不能每次通过日志来获取原消息,然后让运维帮忙重新投递消息(没错,以前就是这么干的= =)。通过配置死信队列,可以让未正确处理的消息暂存到另一个队列中,待后续排查清楚 问题后,编写相应的处理代码来处理死信消息,这样比手工恢复数据要好太多了。

延时队列使用场景

  1. 订单在十分钟之内未支付则自动取消。
  2. 新创建的店铺,如果在十天内都没有上传过商品,则自动发送消息提醒。
  3. 账单在一周内未支付,则自动结算。
  4. 用户注册成功后,如果三天内没有登陆则进行短信提醒。
  5. 用户发起退款,如果三天内没有得到处理则通知相关运营人员。
  6. 预定会议后,需要在预定的时间点前十分钟通知各个与会人员参加会议。

为什么不应该对所有的 message 都使用持久化机制?

首先,必然导致性能的下降,因为写磁盘比写 RAM 慢的多,message 的吞吐量可能有 10 倍的差距。

其次,message 的持久化机制用在 RabbitMQ 的内置 cluster 方案时会出现“坑爹”问题。矛盾点在于,若 message 设置了 persistent 属性,但 queue 未设置 durable 属性,那么当该 queue 的 owner node 出现异常后,在未重建该 queue 前,发往该 queue 的 message 将被 blackholed ;若 message 设置了 persistent 属性,同时 queue 也设置了 durable 属性,那么当 queue 的 owner node 异常且无法重启的情况下,则该 queue 无法在其他 node 上重建,只能等待其 owner node 重启后,才能恢复该 queue 的使用,而在这段时间内发送给该 queue 的 message 将被 blackholed 。所以,是否要对 message 进行持久化,需要综合考虑性能需要,以及可能遇到的问题。若想达到 100,000 条/秒以上的消息吞吐量(单 RabbitMQ 服务器),则要么使用其他的方式来确保 message 的可靠 delivery ,要么使用非常快速的存储系统以支持全持久化(例如使用 SSD)。另外一种处理原则是:仅对关键消息作持久化处理(根据业务重要程度),且应该保证关键消息的量不会导致性能瓶颈。

标签: rabbitmq 分布式

本文转载自: https://blog.csdn.net/m0_54144956/article/details/143673270
版权归原作者 A逍遥人世欢 所有, 如有侵权,请联系我们删除。

“RabbitMQ 面试题”的评论:

还没有评论