0


大数据之Kafka————java来实现kafka相关操作

一、在java中配置pom

 <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka-clients</artifactId>
      <version>2.8.0</version>
    </dependency>
    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka_2.12</artifactId>
      <version>2.8.0</version>
    </dependency>
  </dependencies>

二、生产者方法

(1)、Producer

Java中写在生产者输入内容在kafka中可以让消费者提取

[root@kb144 config]# kafka-console-consumer.sh --bootstrap-server 192.168.153.144:9092 --topic kb22

package nj.zb.kb22.Kafka;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.Scanner;

/**
 * 用java生产消息 在xshell消费消息
 */
public class MyProducer {
    public static void main(String[] args) {
        Properties properties = new Properties();
        //生产者的配置文件
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.153.144:9092");
        //key的序列化
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        //value的序列化
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class);
        /**
         * ack应答机制
         * 0
         * 1
         * all
        */
       properties.put(ProducerConfig.ACKS_CONFIG,"1");
        KafkaProducer<String, String> producer = new KafkaProducer<String, String>(properties);
        Scanner scanner = new Scanner(System.in);
        while (true){
            System.out.println("请输入kafka的内容");

            String msg =scanner.next();
            ProducerRecord<String,String> record = new ProducerRecord<String, String>("kb22",msg);
            producer.send(record);
        }
    }
}

(2)、Producer进行多线程操作

生产者多线程是一种常见的技术实践,可以提高消息生产的并发性和吞吐量。通过将消息生产任务分配给多个线程来并行地发送消息,可以有效地利用系统资源,加快消息的发送速度。

package nj.zb.kb22.Kafka;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class MyProducer2 {
    public static void main(String[] args) {
        ExecutorService executorService = Executors.newCachedThreadPool();
        for (int i = 0; i < 10; i++) {//i代表线程
            Thread thread =new Thread(new Runnable() {
                @Override
                public void run() {
                    Properties properties = new Properties();
                    
  properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.153.144:9092");
   properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);              
  properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class);
  properties.put(ProducerConfig.ACKS_CONFIG,"0");
  KafkaProducer<String, String> producer = new KafkaProducer<String, String>(properties);
                    //多线程操作 j代表消息
                    for (int j = 0; j < 100; j++) {
                        String msg=Thread.currentThread().getName()+" "+ j;
                        System.out.println(msg);
                        ProducerRecord<String, String> re = new ProducerRecord<String, String>("kb22", msg);
                        producer.send(re);

                    }

                }
            });
            executorService.execute(thread);
        }
        executorService.shutdown();
        while (true){
            if (executorService.isTerminated()){
                System.out.println("game over");
                break;
            }

        }
    }
}

三、消费者方法

(1)、Consumer

通过java来实现消费者

package nj.zb.kb22.Kafka;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class MyConsumer {
    public static void main(String[] args) {
        Properties properties = new Properties();

        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.153.144:9092");
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);

        //设置拉取信息后是否自动提交(kafka记录当前app是否已经获取到此信息),false 手动提交 ;true 自动提交
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false");

        /**
         * earliest 第一条数据开始拉取(当前应该没有获取过此topic信息)
         * latest 获取最新的数据(当前没有获取过此topic信息)
         * none
         * group消费者分组的概念
         */
        properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"GROUP3");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);
        //创建好kafka消费者对象后,订阅消息,指定消费的topic
        consumer.subscribe(Collections.singleton("kb22"));

        while (true){
            Duration mills = Duration.ofMillis(100);
            ConsumerRecords<String, String> records = consumer.poll(mills);
            for (ConsumerRecord<String,String> record:records){
                String topic = record.topic();
                int partition = record.partition();
                long offset = record.offset();
                String key = record.key();
                String value = record.value();
                long timestamp = record.timestamp();
                System.out.println("topic:"+topic+"\tpartition"+partition+"\toffset"+offset+"\tkey"+key+"\tvalue"+value+"\ttimestamp"+timestamp);
            }
            //consumer.commitAsync();//手动提交
        }
    }
}

(2)、设置多人访问

package nj.zb.kb22.Kafka;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class MyConsumerThread {
    //模仿多人访问
    public static void main(String[] args) {
        for (int i = 0; i <3; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    Properties properties = new Properties();

                    properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.153.144:9092");
                    properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
                    properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);

                    //设置拉取信息后是否自动提交(kafka记录当前app是否已经获取到此信息),false 手动提交 ;true 自动提交
                    properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false");

                    /**
                     * earliest 第一条数据开始拉取(当前应该没有获取过此topic信息)
                     * latest 获取最新的数据(当前没有获取过此topic信息)
                     * none
                     * group消费者分组的概念
                     */
                    properties.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");
                    properties.put(ConsumerConfig.GROUP_ID_CONFIG,"GROUP3");

                    KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

                    consumer.subscribe(Collections.singleton("kb22"));
                    while (true){
                        //poll探寻数据
                        ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
                        for (ConsumerRecord<String,String>record:records){
                            String topic = record.topic();
                            int partition = record.partition();
                            long offset = record.offset();
                            String key = record.key();
                            String value = record.value();
                            long timestamp = record.timestamp();
                            String name = Thread.currentThread().getName();
                            System.out.println("name"+name
                                    +"\ttopic:"+topic
                                    +"\tpartition" +partition
                                    +"\toffset"+offset
                                    +"\tkey"+key
                                    +"\tvalue"+value
                                    +"\ttimestamp"+timestamp
                            );
                        }
                    }
                }
            }).start();

        }
    }
}
标签: 大数据 kafka java

本文转载自: https://blog.csdn.net/ycz926940/article/details/131562785
版权归原作者 承志学数据 所有, 如有侵权,请联系我们删除。

“大数据之Kafka————java来实现kafka相关操作”的评论:

还没有评论