0


Java 二叉树基础概念(递归&迭代)

1. 树型结构

1.1概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。**把它叫做树是因为它看 **起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

**1.2 **概念(重要)

a.节点的度:该节点子树的个数;如上图:A的度为6,J的度为2

b.树的度:该树中,最大结点的度就是该数的度;如上图:树的度为6

c.叶子节点(终端节点):度为0的节点(没有子树的节点)

d.双亲结点/父节点:如上图:D是H的父节点

孩子节点/子节点:如上图:H是D的子节点

e.根节点:没有双亲的节点;如上图:A

**f.**节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

g.树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

2. 二叉树(重点)

**2.1 **概念

每个节点最多只有两颗子树,度<=2.

**2.2 ****二叉树的基本形态 **

**2.3 ****两种特殊的二叉树 **

a.满二叉树:非子叶度都为2

b.完全二叉树:满二叉树缺了“右下角”

**2.4 **二叉树的性质

a.满二叉树:

1.高度为K,则有2^k-1个节点

2.层次为K,则该层有2^(k-1)个节点

3.边个数 = 节点个数 - 1

4.度为0有n0个,度为2有n2个,则 n0 = n2 + 1

b.完全二叉树:

1.有右孩子必有左孩子

2.只可能有一个度为1的节点

**2.5 **二叉树的存储

二叉树的存储结构分为:顺序存储类似于链表的链式存储

顺序存储:只能存完全二叉树

链式存储:普通二叉树

本次展示链式存储

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式

 以此图为例,
 具体如下: 
// 孩子表示法
private static class TreeNode{
    char val;
    TreeNode left;
    TreeNode right;

    public TreeNode(char val) {
        this.val = val;
    }
}
 初始化:
    public static TreeNode build(){
        TreeNode nodeA=new TreeNode('A');
        TreeNode nodeB=new TreeNode('B');
        TreeNode nodeC=new TreeNode('C');
        TreeNode nodeD=new TreeNode('D');
        TreeNode nodeE=new TreeNode('E');
        TreeNode nodeF=new TreeNode('F');
        TreeNode nodeG=new TreeNode('G');
        TreeNode nodeH=new TreeNode('H');
        nodeA.left=nodeB;
        nodeA.right=nodeC;
        nodeB.left=nodeD;
        nodeB.right=nodeE;
        nodeE.right=nodeH;
        nodeC.left=nodeF;
        nodeC.right=nodeG;
        return nodeA;
    }

**2.6 ****二叉树的基本操作 **

**2.6.1 **二叉树的遍历 (递归)

  1. NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
    //先序遍历 : 根左右
    public static void preOrder(TreeNode root){
        if(root==null){
            return;
        }
        System.out.print(root.val+" ");
        preOrder(root.left);
        preOrder(root.right);
    }
  1. LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
    //中序遍历
    public static void inOrder(TreeNode root){
        if(root==null){
            return;
        }
        preOrder(root.left);
        System.out.print(root.val+" ");
        preOrder(root.right);
    }
  1. LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
    //后序遍历
    public static void postOrder(TreeNode root){
        if(root==null){
            return;
        }
        preOrder(root.left);
        preOrder(root.right);
        System.out.print(root.val+" ");
    }

**2.6.2 **二叉树的遍历 (迭代)

1.前序遍历

    //方法2(迭代)
    //先序遍历 (迭代)
    public static void preOrderNonRecursion(TreeNode root){
        if(root==null){
            return ;
        }
        Deque<TreeNode> stack=new LinkedList<>();
        stack.push(root);
        while (!stack.isEmpty()){
            TreeNode cur=stack.pop();
            System.out.print(cur.val+" ");
            if(cur.right!=null){
                stack.push(cur.right);
            }
            if(cur.left!=null){
                stack.push(cur.left);
            }
        }
    }

2.中序遍历

    //方法2(迭代)
    //中序遍历 (迭代)
    public static void inorderTraversalNonRecursion(TreeNode root) {
        if(root==null){
            return ;
        }

        Deque<TreeNode> stack=new LinkedList<>();
        // 当前走到的节点
        TreeNode cur=root;
        while (!stack.isEmpty() || cur!=null){
            // 不管三七二十一,先一路向左走到根儿~
            while (cur!=null){
                stack.push(cur);
                cur=cur.left;
            }
            // 此时cur为空,说明走到了null,此时栈顶就存放了左树为空的节点
            cur=stack.pop();
            System.out.print(cur.val+" ");
            // 继续访问右子树
            cur=cur.right;
        }
    }

3.后序遍历

    //方法2(迭代)
    //后序遍历 (迭代)
    public static void postOrderNonRecursion(TreeNode root){
        if(root==null){
            return;
        }
        Deque<TreeNode> stack=new LinkedList<>();
        TreeNode cur=root;
        TreeNode prev=null;

        while (!stack.isEmpty() || cur!=null){
            while (cur!=null){
                stack.push(cur);
                cur=cur.left;
            }

            cur=stack.pop();
            if(cur.right==null || prev==cur.right){
                System.out.print(cur.val+" ");
                prev=cur;
                cur=null;
            }else {
                stack.push(cur);
                cur=cur.right;
            }
        }
    }

**2.6.3 ****二叉树的基本操作 **

1.求结点个数(递归&迭代)

    //方法1(递归)
    //传入一颗二叉树的根节点,就能统计出当前二叉树中一共有多少个节点,返回节点数
    //此时的访问就不再是输出节点值,而是计数器 + 1操作
    public static int getNodes(TreeNode root){
        if(root==null){
            return 0;
        }
        return 1+getNodes(root.left)+getNodes(root.right);
    }

    //方法2(迭代)
    //使用层序遍历来统计当前树中的节点个数
    public static int getNodesNoRecursion(TreeNode root){
        if(root==null){
            return 0;
        }
        int size=0;
        Deque<TreeNode> queue=new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()) {
            TreeNode cur = queue.poll();
            size++;
            if (cur.left != null) {
                queue.offer(cur.left);
            }
            if (cur.right != null) {
                queue.offer(cur.right);
            }
        }
        return size;
    }

2.求叶子结点个数(递归&迭代)

    //方法1(递归)
    //传入一颗二叉树的根节点,就能统计出当前二叉树的叶子结点个数
    public static int getLeafNodes(TreeNode root){
        if(root==null){
            return 0;
        }
        if(root.left==null && root.right==null){
            return 1;
        }
        return getLeafNodes(root.left)+getLeafNodes(root.right);
    }

    //方法2(迭代)
    //使用层序遍历来统计叶子结点的个数
    public static int getLeafNodesNoRecursion(TreeNode root){
        if(root==null){
            return 0;
        }
        int size=0;
        Deque<TreeNode> queue=new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()){
            TreeNode cur=queue.poll();
            if(cur.left==null && cur.right==null){
                size++;
            }
            if(cur.left!=null){
                queue.offer(cur.left);
            }
            if(cur.right!=null){
                queue.offer(cur.right);
            }
        }
        return size;
    }

3.求第 k 层结点个数

    //求出以root为根节点的二叉树第k层的节点个数
    public static int getKLevelNodes(TreeNode root,int k){
        if(root==null || k<=0){
            return 0;
        }
        if(k==1){
            return 1;
        }
        return getKLevelNodes(root.left,k-1)+getKLevelNodes(root.right,k-1);
    }

4.求树的高度

    //传入一个以root为根节点的二叉树,就能求出该树的高度
    public static int height(TreeNode root){
        if(root==null){
            return 0;
        }
        return 1+ Math.max(height(root.left),height(root.right));
    }

5.判断二叉树数中是否存在值为value的节点

    //判断当前以root为根节点的二叉树中是否包含指定元素val,
    //若存在返回true,不存在返回false
    public static boolean contains(TreeNode root,char value){
        if(root==null){
            return false;
        }
        if(root.val==value){
            return true;
        }
        return contains(root.left,value) || contains(root.right,value);
    }

**2.7 **二叉树的层序遍历

    //层序遍历
    public static void levelOrder(TreeNode root) {
        if(root==null){
            return ;
        }

        // 借助队列来实现遍历过程
        Deque<TreeNode> queue =new LinkedList<>();
        queue.offer(root);
        while (!queue.isEmpty()){
            int size=queue.size();
            for (int i = 0; i < size; i++) {
                TreeNode cur=queue.poll();
                System.out.print(cur.val+" ");
                if(cur.left!=null){
                    queue.offer(cur.left);
                }
                if(cur.right!=null){
                    queue.offer(cur.right);
                }
            }
        }
    }

3.二叉树完整代码

二叉树完整代码见下节:《Java 二叉树完整代码(递归&迭代)》​​​​​​​


本文转载自: https://blog.csdn.net/m0_62218217/article/details/123067319
版权归原作者 爱干饭的猿 所有, 如有侵权,请联系我们删除。

“Java 二叉树基础概念(递归&amp;迭代)”的评论:

还没有评论