0


LLMs之Code:SQLCoder的简介、安装、使用方法之详细攻略

LLMs之Code:SQLCoder的简介、安装、使用方法之详细攻略

SQLCoder****的简介

2023年8月,发布了SQLCoder,这是一个先进的LLM,用于将自然语言问题转换为SQL查询。SQLCoder在基础的StarCoder模型上进行了微调。SQLCoder是一个拥有150亿参数的模型,在我们的sql-eval框架上,它在自然语言到SQL生成任务上胜过了gpt-3.5-turbo,并且在所有流行的开源模型中表现显著。它还明显优于大小超过10倍的text-davinci-003模型。

Defog在2个时期内对10537个经过人工筛选的问题进行了训练。这些问题基于10个不同的模式。在训练数据中,没有包括评估框架中的任何模式。

训练分为2个阶段。第一阶段是关于被分类为“容易”或“中等”难度的问题,第二阶段是关于被分类为“困难”或“超级困难”难度的问题。

在easy+medium数据上的训练结果存储在一个名为defog-easy的模型中。我们发现在hard+extra-hard数据上的额外训练导致性能增加了7个百分点。

官网在线测试https://defog.ai/sqlcoder-demo/

GitHub官网:GitHub - defog-ai/sqlcoder: SoTA LLM for converting natural language questions to SQL queries

1、****结果

model

perc_correct

gpt-4

74.3

defog-sqlcoder

64.6

gpt-3.5-turbo

60.6

defog-easysql

57.1

text-davinci-003

54.3

wizardcoder

52.0

starcoder

45.1

2、****按问题类别的结果

我们将每个生成的问题分类为5个类别之一。该表显示了每个模型按类别细分的正确回答问题的百分比。

query_category

gpt-4

defog-sqlcoder

gpt-3.5-turbo

defog-easy

text-davinci-003

wizard-coder

star-coder

group_by

82.9

77.1

71.4

62.9

62.9

68.6

54.3

order_by

71.4

65.7

60.0

68.6

60.0

54.3

57.1

ratio

62.9

57.1

48.6

40.0

37.1

22.9

17.1

table_join

74.3

57.1

60.0

54.3

51.4

54.3

51.4

where

80.0

65.7

62.9

60.0

60.0

60.0

45.7

SQLCoder****的安装

1、****硬件要求

SQLCoder已在A100 40GB GPU上进行了测试,使用bfloat16权重。您还可以在具有20GB或更多内存的消费者GPU上加载8位和4位量化版本的模型。例如RTX 4090、RTX 3090以及具有20GB或更多内存的Apple M2 Pro、M2 Max或M2 Ultra芯片。

2、下载模型权重

地址:defog/sqlcoder · Hugging Face

3、****使用SQLCoder

您可以通过transformers库使用SQLCoder,方法是从Hugging Face存储库中下载我们的模型权重。我们已添加了有关在示例数据库架构上进行推断的示例代码。

python inference.py -q "Question about the sample database goes here"

示例问题:我们与纽约的客户相比,从旧金山的客户那里获得更多收入吗?为我提供每个城市的总收入以及两者之间的差异。您还可以在我们的网站上使用演示,或在Colab中运行SQLCoder。

4、****Colab中运行SQLCoder

地址https://colab.research.google.com/drive/1z4rmOEiFkxkMiecAWeTUlPl0OmKgfEu7?usp=sharing#scrollTo=MKuocI44V-Bo

第一步,配置环境

!pip install torch transformers bitsandbytes accelerate

第二步,测试

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

torch.cuda.is_available()

第三步,****下载模型

使用Colab Pro上的A100(或具有> 30GB VRAM的任何系统)在bf16中加载它。如果不可用,请使用至少具有20GB VRAM的GPU在8位中加载它,或者至少具有12GB VRAM在4位中加载它。在Colab上,它适用于V100,但在T4上崩溃。

首次下载模型然后将其加载到内存中的步骤大约需要10分钟。所以请耐心等待 :)

model_name = "defog/sqlcoder"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    # torch_dtype=torch.bfloat16,
    # load_in_8bit=True,
    load_in_4bit=True,
    device_map="auto",
    use_cache=True,
)

第四步,设置问题和提示并进行标记化

随意更改以下问题。如果您想要尝试自己的数据库架构,请在提示中编辑模式。

question = "What product has the biggest fall in sales in 2022 compared to 2021? Give me the product name, the sales amount in both years, and the difference."

prompt = """### Instructions:
Your task is to convert a question into a SQL query, given a Postgres database schema.
Adhere to these rules:
- **Deliberately go through the question and database schema word by word** to appropriately answer the question
- **Use Table Aliases** to prevent ambiguity. For example, `SELECT table1.col1, table2.col1 FROM table1 JOIN table2 ON table1.id = table2.id`.
- When creating a ratio, always cast the numerator as float

### Input:
Generate a SQL query that answers the question `{question}`.
This query will run on a database whose schema is represented in this string:
CREATE TABLE products (
  product_id INTEGER PRIMARY KEY, -- Unique ID for each product
  name VARCHAR(50), -- Name of the product
  price DECIMAL(10,2), -- Price of each unit of the product
  quantity INTEGER  -- Current quantity in stock
);

CREATE TABLE customers (
   customer_id INTEGER PRIMARY KEY, -- Unique ID for each customer
   name VARCHAR(50), -- Name of the customer
   address VARCHAR(100) -- Mailing address of the customer
);

CREATE TABLE salespeople (
  salesperson_id INTEGER PRIMARY KEY, -- Unique ID for each salesperson
  name VARCHAR(50), -- Name of the salesperson
  region VARCHAR(50) -- Geographic sales region
);

CREATE TABLE sales (
  sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale
  product_id INTEGER, -- ID of product sold
  customer_id INTEGER,  -- ID of customer who made purchase
  salesperson_id INTEGER, -- ID of salesperson who made the sale
  sale_date DATE, -- Date the sale occurred
  quantity INTEGER -- Quantity of product sold
);

CREATE TABLE product_suppliers (
  supplier_id INTEGER PRIMARY KEY, -- Unique ID for each supplier
  product_id INTEGER, -- Product ID supplied
  supply_price DECIMAL(10,2) -- Unit price charged by supplier
);

-- sales.product_id can be joined with products.product_id
-- sales.customer_id can be joined with customers.customer_id
-- sales.salesperson_id can be joined with salespeople.salesperson_id
-- product_suppliers.product_id can be joined with products.product_id

### Response:
Based on your instructions, here is the SQL query I have generated to answer the question `{question}`:
```sql
""".format(question=question)
eos_token_id = tokenizer.convert_tokens_to_ids(["```"])[0]

第五步,****生成SQL

在具有4位量化的V100上可能非常缓慢。每个查询可能需要大约1-2分钟。在单个A100 40GB上,需要大约10-20秒。


inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(
    **inputs,
    num_return_sequences=1,
    eos_token_id=eos_token_id,
    pad_token_id=eos_token_id,
    max_new_tokens=400,
    do_sample=False,
    num_beams=5
)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
torch.cuda.empty_cache()
torch.cuda.synchronize()
# 清空缓存,以便在内存崩溃时可以生成更多结果
# 在Colab上特别重要 - 内存管理要简单得多
# 在运行推断服务时
# 嗯!生成的SQL在这里:
print(outputs[0].split("```sql")[-1].split("```")[0].split(";")[0].strip() + ";")

SQLCoder****的使用方法

更新中……


本文转载自: https://blog.csdn.net/qq_41185868/article/details/132571527
版权归原作者 一个处女座的程序猿 所有, 如有侵权,请联系我们删除。

“LLMs之Code:SQLCoder的简介、安装、使用方法之详细攻略”的评论:

还没有评论