0


阿里面试:设计一个大并发、大数据的系统架构,说说设计思路

尼恩说在前面

在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题:

请设计一个支持大并发/大数据的软件架构,说说设计思路。

最近有小伙伴在面试阿里,又遇到了相关的面试题。小伙伴懵了,因为没有遇到过,所以支支吾吾的说了几句,面试官不满意,面试挂了。

所以,尼恩给大家做一下系统化、体系化的梳理,使得大家内力猛增,可以充分展示一下大家雄厚的 “技术肌肉”,让面试官爱到 “不能自已、口水直流”,然后实现”offer直提”。

当然,这道面试题,以及参考答案,也会收入咱们的 《尼恩Java面试宝典PDF》V166版本,供后面的小伙伴参考,提升大家的 3高 架构、设计、开发水平。

《尼恩 架构笔记》《尼恩高并发三部曲》《尼恩Java面试宝典》的PDF,请到文末公号【技术自由圈】获取

文章目录

大并发/大数据的软件有如下特点:

  • 用户多,分布广泛
  • 大流量,高并发
  • 从小到大,渐进发展
  • 以用户为中心
  • 海量数据,服务高可用
  • 安全环境恶劣,易受网络攻击
  • 功能多,变更快,频繁发布

大并发/大数据的架构目标有如下几个:

  • 高性能:提供快速的访问体验。
  • 高可用:网站服务一直可以正常访问。
  • 可伸缩:通过硬件增加/减少,提高/降低处理能力。
  • 扩展性:方便地通过新增/移除方式,增加/减少新的功能/模块。
  • 安全性:提供网站安全访问和数据加密、安全存储等策略。
  • 敏捷性:随需应变,快速响应。

大并发/大数据的设计思路与原则

1.演进原则

优秀的架构和产品都是一步一步迭代出来的,用户量的不断增大,业务的扩展进行不断地迭代升级,最终演化成优秀的架构。

  • 早期项目,由于团队规模有限,技术经验不足,往往使用一个简单的单体架构、单节点DB。
  • 随着流量增加和业务演变,需要不断修正系统架构中的问题点,基于后面的几个原则,一点一点的进行系统演进

演进原则:高并发/大数据系统的演进是循序渐进的,以在高并发、大数据场景下不断优化用户体验为目标。

2.单一职责( Single Responsibility Principle)原则

定义:对一个类而言,应该仅有一个引起它变化的原因。

说明:一个类应该是相关性很高的封装,类只实现一个功能。

很多的时候,我们代码中有大量的上帝类,所谓上帝类

把不应该是一个类的功能也往自己身上揽,大包大揽,导致内聚性就会很差,

内聚性差将导致代码很难被复用,不能复用,只能复制(Repeat Yourself),其结果就是一团乱麻。

3.开闭原则(Open Closed Principle)

定义:软件中的对象应该对于扩展是开放的,对于修改是关闭的。面对新需求,对程序的改动应该是通过增加代码实现的而不是修改现有代码来实现

说明:当软件需要变化时,我们尽可能的通过扩展的方式来实现变化,

比如通过继承,通过装饰者模式来增加新的功能,而不是通过修改已有的接口来实现,一旦修改接口,上层调用的地方均需要修改。

开闭原则是面向对象设计的核心所在,遵循开闭原则的最好手段就是抽象

防止变异(Protected Variations)

问题:如何设计对象,子系统和系统,使其内部的变化或不稳定性不会对其他元素产生不良影响?

解决方案:分离变与不变, 识别变化或不稳定的地方,抽象出稳定的接口。

开发人员应该仅对程序中频繁出现变化的那些部分做出抽象,如果对于应用程序中每个部分都做刻意的抽象并不是个好主意。

拒绝不成熟的抽象和抽象本身一样重要。

4.高内聚低耦合/迪米特原则(Law of Demeter)

定义:

  • 如果两个类不必彼此直接通信,那么这两个类就不应当发生直接的互相引用。
  • 如果中间一个类需要调用另一个类的某一个方法,可以通过第三者转发这个调用。

一个对象应该对其他对象有最少的了解也被称为最少知识原则。

该原则首先强调的是在类的结构设计上,应该尽可能低的设计成员的访问权限。

其根本思想是强调了类的松耦合,类之间的耦合越弱,越有利于复用,一个处在弱耦合的类被修改,不会波及有关系的类。

也就是说,一个类应该对自己需要耦合或调用的类知道的最少,类与类之间的关系越密切,耦合度越大,那么类的变化对其耦合的类的影响也会越大,这也是我们面向对象设计的核心原则:低耦合,高内聚。

什么是直接的朋友?

每个对象都必然与其他对象有耦合关系,两个对象的耦合就成为朋友关系,这种关系的类型很多,例如组合、聚合、依赖、关联等。

其中,我们称出现成员变量、方法参数、方法返回值中的类为直接的朋友,而出现在局部变量中的类则不是直接的朋友。也就是说,陌生的类最好不要作为局部变量的形式出现在类的内部

5.横向扩展(Scale-out)原则

纵向扩展总是有 上限的, 大数据、大并发系统的核心思路之一就是: 横向扩展。

横向扩展(Scale-out)的核心思路:采用分布式策略将系统的负载分散到多台服务器上,每台服务器处理一部分并发和流量。

横向扩展(Scale-out)可以充分利用现有硬件资源,提高系统的整体性能,使系统更能应对大规模并发请求。

6.缓存原则

缓存,广泛应用于系统设计的各个方面。

缓存,从操作系统到浏览器,从数据库到消息队列,从应用软件到操作系统,从操作系统到CPU,无处不在。

缓存,几乎所有复杂的服务和组件都在使用。

缓存,是空间换时间的思想。

7.异步原则

同步调用,意味着调用方在调用一个方法后会阻塞等待该方法的逻辑执行完成。

异步调用 与 同步相反。

异步调用 , 主要是三大步骤:

  • 调用方发出请求后不需要等待,快速返回
  • 被调方可以慢慢执行,
  • 调用方通过回调函数、事件通知等方式获取执行的结果。

异步调用 方式在大规模高并发系统中被广泛采用。

以 12306 网站为例。

  • 当用户订票时,先将请求丢到消息队列中,然后立即告诉用户正在处理,然后立即返回。
  • 系统进行复杂的订票操作,如查询余票、下单、更改余票状态等,这些操作可能需要耗费较长时间
  • 当订票操作完成后,系统再通知用户订票成功或失败。

这种异步处理方式使得系统能够更好地应对高并发,减少了资源占用,提高了系统的性能和可扩展性。

大并发/大数据的分层架构

高并发/大数据的架构设计,一般是分层进行,可以从下面的5大层来建设和分析:

1:接入层

主要流量入口

2:应用层

负责具体业务和视图展示;

网站首页、用户中心、商品中心、购物车、红包业务、活动中心等,

3:服务层

根据业务领域每个子域单独一个服务,分而治之。

服务层为应用层提供服务支持; 比如:订单服务、用户管理服务、红包服务、商品服务等

这个是我们重点要关注的架构设计,架构设计不合理,就很难抗住高并发,主要包括各种架构和模块的设计。

4:数据层

数据库和NoSQL,文件存储等。

关系数据库、nosql数据库等,提供数据存储查询服务。

5:基础设施层

这个是最基础的依赖,主要是一些服务的部署。

基础设施层一般包含了服务器、中间件、部署方式等等。

1 接入层的架构方案:

动静分离,分而治之

  • 动态资源使用 Nginx+LVS+KeepAlive 进行负载均衡
  • 静态资源使用 CDN进行加速

动态资源Nginx+LVS+KeepAlive 进行负载均衡

请参见尼恩之前的文章

10Wqps网关接入层,LVS+Keepalived(DR模式)如何搭建?

静态资源使用CDN加速

CDN相当于加上一层缓存, 加载离用户最近的idc机房, 由cdn的运营商提供, 比如电信等

秒杀的静态页面通过到CDN上预热(CDN是内容分发网络,可以简单理解成互联网上的巨大的缓存,用于存放静态页面、图片、视频等,可以显著提高访问速度),

用CDN扛流量,这样大量的商品详情页的访问请求就不用访问自己的网站(源站)。这样既可以提高访问速度,也没有给网站增加压力,同时也减少了网站带宽压力。

第二三层:应用层/服务层架构方案

1: 业务解耦

对一个复杂的业务,需要分割成不同的模块单元,分而治之

一个大的问题域,需要分解为很多小的问题域,分而治之

就是是微服务划分、微服务架构

微服务架构解决大单体架构的的很多问题,比如扩展性、弹性伸缩能力、小规模团队的敏捷开发等等。

如何进行微服务架构,如何划分微服务:

  • 高内聚低耦合
  • 单一职责
  • 可扩展原则
  • 等等等等

如何进行业务解耦,如何划分微服务?

在实操过程中, 建议使用DDD的建模方法进行建模。

具体请参见尼恩的系列文章

《字节面试:微服务一定要DDD,为什么?TDD和DDD 有何关系?》

《美团面试:微服务如何拆分?原则是什么?》

2:横向扩展设计

横向扩展设计,包括:应用集群、服务集群

应对高并发系统,单节点模式都不可能搞定,因此都需要搭建应用集群、服务集群,

常见的微服务Provider的自动伸缩策略有以下两种:

1)通过Kubernetes HPA组件实现自动伸缩。

2)通过微服务Provider自动伸缩伺服组件实现自动伸缩。

具体请参见尼恩的卷3:

3:缓存设计:多级缓存架构

缓存,广泛应用于系统设计的各个方面。

缓存,从操作系统到浏览器,从数据库到消息队列,从应用软件到操作系统,从操作系统到CPU,无处不在。

缓存,几乎所有复杂的服务和组件都在使用。

缓存,是空间换时间的思想。

缓存的可以提升系统性能,保护后端存储不被大流量打垮。

缓存的设计,需要分多个思路并行。

  • 普通数据一级缓存就够了
  • 热点数据要用到多级缓存

缓存的设计方案很多, 很复杂,也是面试的热点和难点

具体方案,请参见尼恩的卷3

4:异步原则:进程内的异步

进程内的异步, 是一个很有深度的问题, 尼恩把这个问题归纳为全链路异步

全链路异步,能大大的优化系统的并发量,单机解决高并发问题

从应用层的线程池,再到 IO层的Epoll 事件驱动(Nginx),都需要最大程度的异步。

全链路异步模式改造 具体的内容,请参考尼恩的深度文章:

全链路异步,让你的性能优化10倍+

另外,对于特殊的高并发场景,可以使用 Go+java的混合架构, 进一步压榨 CPU的性能

借助 Go 语言协程,去提高并发能力。

go + Java 混合微服务 架构, 请参见尼恩视频。

5:异步原则:进程外的异步

消息队列也是一种异步化操作,是依赖外部的中间件如消息队列,进行的异步。

针对流量突峰,仅仅有缓存来抗量可能还不够,还需要使用消息队列来异步削峰。

使用消息队列后,可以将同步处理的请求改为 通过消费 MQ 消息来异步消费,这样可以大大减少系统处理的压力,增加系统的并发量。

常用的消息队列比如 kafka、Rocketmq。

6:预热原则

预热实际应用的场景有很多,比如在电商的大促到来前,我们可以把一些热点的商品提前加载到缓存中,防止大流量冲击DB。

预热原则一般有JVM预热、缓存预热、DB预热等,

通过预热的方式让系统先“热”起来,为高并发流量的到来做好准备。

第四层:数据层架构方案

1:分库分表

数据存储量大的时候,就需要通过分库分表来存储。

分库分表模式虽然能显著提升数据库的容量,但会增加系统复杂性,因此在设计分库分表方案的时候需要结合具体业务场景,更全面地考虑。

2:读写分离

高并发系统,大多数都是读多写少,因此读写分离可以帮助主库抗量。

一般我们都是一主多从的架构,可以抗量,也可以保证数据不丢。

3:冷热分离

针对业务场景而言,如果数据有冷热之分的话,可以将历史冷数据与当前热数据分开存储,

这样可以减轻当前热数据的存储量,可以提高性能。

4:使用NoSQL完成大数据的存储

当数据库中的数据多到一定规模时,数据库就不适用于复杂的查询了,往往只能满足普通查询的场景。

对于统计报表场景,在数据量大时不一定能跑出结果,而且在跑复杂查询时会导致其他查询变慢,对于全文检索、可变数据结构等场景,数据库天生不适用。

以上内容,请参见尼恩的卷3

第五层:基础设施层架构

基础设施层架构 包含:

  • 监控三大件: logging、tracing、metrics。
  • 各种中间件
  • cicd组件

具体,请参见尼恩的文章

网易面试:亿级用户,如何做微服务底层架构?

高并发核武器:单元化+异地多活设计

除了前面的高并发常规武器, 还有高并发的核武器::单元化+异地多活设计

1:单元化(Set化)设计

一个服务对外的使用方可能有 A 业务、B 业务,那么如何保证 AB 业务不会相互影响,那么就是单元化(Set化)设计。

所谓单元,是指一个能完成所有业务操作的自包含集合,在这个集合中包含了所有业务所需的所有服务,以及单元的数据分片

单元化架构就是把单元作为系统部署的基本单位,在全站所有idc机房中部署数个单元.

每个idc机房里的单元数目不定,任意一个单元都部署了系统所需的所有的服务

任意一个单元的数据是首先拥有分片数据,但是为了切流的方便, 最终需要拥有全量数据

传统意义上的 SOA 化(服务化)架构,服务是分层的,每层的节点数量不尽相同,上层调用下层时,随机选择节点。

单元化架构下,服务仍然是分层的,

不同的是每一层中的任意一个节点都属于且仅属于某一个单元,上层调用下层时,仅会选择本单元内的节点。

而要做到单元化,必须要满足以下要求:

  • 业务必须是可分片的,如 淘宝按照用户分片, 饿了么按照地理位置分片
  • 单元内的业务是自包含的,调用尽量封闭

单元化署就是把业务系统分为多个可扩展的逻辑分区,每个 SET 的逻辑分区都可以独立部署并提供服务,SET 也可以理解为 ”逻辑机房“ ,主要目的就是为了进行独立部署并且做到业务上的逻辑隔离。

关于 单元化SET 的具体例子:

  • 微信红包用户发一个红包时,微信红包系统生成一个ID作为这个红包的唯一标识。
  • 接下来这个红包的所有发红包、抢红包、拆红包、查询红包详情等操作,都根据这个ID关联。
  • 红包系统根据这个红包ID,按一定的规则(如按ID尾号取模等),垂直上下切分。
  • 切分后,一个垂直链条上的逻辑Server服务器、DB统称为一个SET。

单元化SET 部署之后,系统将所有红包请求这个巨大的洪流分散为多股小流,互不影响,分而治之。

现在稍微有点体量的公司都在做单元化,单元化的好处

1. 多AZ(可用区) 容灾、异地多活。

2. 服务器体量太大,单一IDC没有足够的机器。

3. 提升用户请求访问速度。

2:多 IDC + 异地多活

基础设施层一般包含了服务器、IDC、部署方式等等。

  • 多 IDC 部署。比如服务同时在广州、上海两地部署。这个依赖我们的服务是无状态的;
  • 其他的参考下异地多活架构等相关部署。

3:尼恩的异地多活的系列问题

异地多活方案复杂, 尼恩之前积累过一系列的问题,可供参考:

《B站刚崩,唯品会又崩:亿级用户网站的架构硬伤与解决方案》

《100Wqps异地多活,得物是怎么架构的?》

《大家都崩,美团不崩:其高可用架构,巧夺天工!》

《美团面试:ES+Redis+MySQL高可用,如何实现?》

说在最后:有问题找老架构取经

以上的内容,如果大家能对答如流,如数家珍,基本上 面试官会被你 震惊到、吸引到。

最终,让面试官爱到 “不能自已、口水直流”。offer, 也就来了。

在面试之前,建议大家系统化的刷一波 5000页《尼恩Java面试宝典PDF》,里边有大量的大厂真题、面试难题、架构难题。很多小伙伴刷完后, 吊打面试官, 大厂横着走。

在刷题过程中,如果有啥问题,大家可以来 找 40岁老架构师尼恩交流。

另外,如果没有面试机会,可以找尼恩来改简历、做帮扶。

遇到职业难题,找老架构取经, 可以省去太多的折腾,省去太多的弯路。

尼恩指导了大量的小伙伴上岸,前段时间,刚指导一个40岁+被裁小伙伴,拿到了一个年薪100W的offer。

狠狠卷,实现 “offer自由” 很容易的, 前段时间一个武汉的跟着尼恩卷了2年的小伙伴, 在极度严寒/痛苦被裁的环境下, offer拿到手软, 实现真正的 “offer自由” 。

尼恩技术圣经系列PDF

  • 《NIO圣经:一次穿透NIO、Selector、Epoll底层原理》
  • 《Docker圣经:大白话说Docker底层原理,6W字实现Docker自由》
  • 《K8S学习圣经:大白话说K8S底层原理,14W字实现K8S自由》
  • 《SpringCloud Alibaba 学习圣经,10万字实现SpringCloud 自由》
  • 《大数据HBase学习圣经:一本书实现HBase学习自由》
  • 《大数据Flink学习圣经:一本书实现大数据Flink自由》
  • 《响应式圣经:10W字,实现Spring响应式编程自由》
  • 《Go学习圣经:Go语言实现高并发CRUD业务开发》

……完整版尼恩技术圣经PDF集群,请找尼恩领取

《尼恩 架构笔记》《尼恩高并发三部曲》《尼恩Java面试宝典》PDF,请到下面公号【技术自由圈】取↓↓↓


本文转载自: https://blog.csdn.net/crazymakercircle/article/details/136015878
版权归原作者 40岁资深老架构师尼恩 所有, 如有侵权,请联系我们删除。

“阿里面试:设计一个大并发、大数据的系统架构,说说设计思路”的评论:

还没有评论