大数据编程实验三:SparkSQL编程
文章目录
一、前言
二、实验目的与要求
- 通过实验掌握Spark SQL的基本编程方法
- 熟悉RDD到DataFrame的转化方法
- 熟悉利用Spark SQL管理来自不同数据源的数据
三、实验内容
- Spark SQL基本操作将下列JSON格式数据复制到Linux系统中,并保存命名为employee.json。
{"id":1,"name":" Ella","age":36}{"id":2,"name":"Bob","age":29}{"id":3,"name":"Jack","age":29}{"id":4,"name":"Jim","age":28}{"id":4,"name":"Jim","age":28}{"id":5,"name":"Damon"}{"id":5,"name":"Damon"}
为employee.json创建DataFrame,并写出Python语句完成下列操作:(1) 查询所有数据;(2) 查询所有数据,并去除重复的数据;(3) 查询所有数据,打印时去除id字段;(4) 筛选出age>30的记录;(5) 将数据按age分组;(6) 将数据按name升序排列;(7) 取出前3行数据;(8) 查询所有记录的name列,并为其取别名为username;(9) 查询年龄age的平均值;(10) 查询年龄age的最小值。 - 编程实现将RDD转换为DataFrame源文件内容如下(包含id,name,age):
1,Ella,362,Bob,293,Jack,29
请将数据复制保存到Linux系统中,命名为employee.txt,实现从RDD转换得到DataFrame,并按“id:1,name:Ella,age:36”的格式打印出DataFrame的所有数据。请写出程序代码。 - 编程实现利用DataFrame读写MySQL的数据(1)在MySQL数据库中新建数据库sparktest,再创建表employee,包含如下表所示的两行数据。
(2)配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入如表5-3所示的两行数据到MySQL中,最后打印出age的最大值和age的总和。
四、实验步骤
1、Spark SQL基本操作
我们在之前创建的sparkdata目录下创建该json文件并将上面信息复制进去并保存命名为employee.json:
cd /usr/local/spark/sparkdata
vim employee.json
然后我们进入到pyspark中,开始做题。
首先我们创建一个DataFrame:
>>> sp=SparkSession.builder.getOrCreate()>>> df=sp.read.json("file:///usr/local/spark/sparkdata/employee.json")
(1)查询DataFrame的所有数据
>>> df.show()
(2)查询所有数据,并去除重复的数据
>>> df.distinct().show()
(3)查询所有数据,打印时去除id字段
>>> df.drop("id").show()
(4)筛选age>30的记录
df.filter(df.age>30).show()
(5) 将数据按age分组
>>> df.groupBy("age").count().show()
(6) 将数据按name升序排列
>>> df.sort(df.name.asc()).show()
(7) 取出前3行数据
>>> df.take(3)
(8) 查询所有记录的name列,并为其取别名为username
>>> df.select(df.name.alias("username")).show()
(9) 查询年龄age的平均值
>>> df.agg({"age":"mean"}).show()
(10) 查询年龄age的最小值
>>> df.agg({"age":"min"}).show()
2、编程实现将RDD转换为DataFrame
首先我们仍然在sparkdata目录下创建我们需要的文件并命令为employee.txt,然后写入信息:
vim employee.txt
然后我们还是在该目录下新建一个py文件命名为rddTodf.py,然后写入如下py程序:
from pyspark.conf import SparkConf
from pyspark.sql.session import SparkSession
from pyspark import SparkContext
from pyspark.sql.types import Row
from pyspark.sql import SQLContext
if __name__ =="__main__":
sc = SparkContext("local","Simple App")
spark=SparkSession(sc)
peopleRDD = spark.sparkContext.textFile("file:///usr/local/spark/sparkdata/employee.txt")
rowRDD = peopleRDD.map(lambda line : line.split(",")).map(lambda attributes : Row(int(attributes[0]),attributes[1],int(attributes[2]))).toDF()
rowRDD.createOrReplaceTempView("employee")
personsDF = spark.sql("select * from employee")
personsDF.rdd.map(lambda t :"id:"+str(t[0])+","+"Name:"+t[1]+","+"age:"+str(t[2])).foreach(print)
然后我们运行该程序:
python3 rddTodf.py
出现这个结果证明成功。
3、编程实现利用DataFrame读写MySQL的数据
我们首先启动mysql服务并进入到mysql数据库中:
systemctl start mysqld.service
mysql -u root -p
然后开始接下来的操作。
(1)在MySQL数据库中新建数据库sparktest,再创建表employee,并写入题目中的原始数据
mysql> create database sparktest;
mysql> use sparktest;
mysql> create table employee (id int(4),name char(20),gender char(4),age int(4));
mysql> insert into employee values(1,'Alice','F',22);
mysql> insert into employee values(2,'John','M',25);
(2)配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入下列数据到MySQL,最后打印出age的最大值和age的总和
我们仍然在sparkdata目录下面新建一个py程序并命名为mysqlTest.py:
cd /usr/local/spark/sparkdata
vim mysqlTest.py
然后写入如下py程序:
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.types import Row
from pyspark.sql.types import StructType
from pyspark.sql.types import StructField
from pyspark.sql.types import StringType
from pyspark.sql.types import IntegerType
if __name__ =="__main__":
sc = SparkContext('local','test')
spark=SQLContext(sc)
jdbcDF=spark.read.format("jdbc").option("url","jdbc:mysql://localhost:3306/sparktest").option("driver","com.mysql.jdbc.Driver").option("dbtable","employee").option("user","root").option("password","MYsql123!").load()
jdbcDF.filter(jdbcDF.age>20).collect()# 检测是否连接成功
studentRDD = sc.parallelize(["3 Mary F 26","4 Tom M 23"]).map(lambda line : line.split(" "))
schema = StructType([StructField("id",IntegerType(),True),StructField("name", StringType(),True),StructField("gender", StringType(),True),StructField("age",IntegerType(),True)])
rowRDD = studentRDD.map(lambda p : Row(int(p[0]),p[1].strip(), p[2].strip(),int(p[3])))
employeeDF = spark.createDataFrame(rowRDD, schema)
prop ={}
prop['user']='root'
prop['password']='MYsql123!'
prop['driver']="com.mysql.jdbc.Driver"
employeeDF.write.jdbc("jdbc:mysql://localhost:3306/sparktest",'employee','append', prop)
jdbcDF.collect()
jdbcDF.agg({"age":"max"}).show()
jdbcDF.agg({"age":"sum"}).show()
然后直接运行该py程序即可得到结果:
python3 mysqlTest.py
五、最后我想说
本次实验的话,难度主要在后面两个题目中,在第二题中我遇见了两个错误:
- PipelinedRDD’ object has no attribute ‘toDF’
- ‘SparkSession’ object has no attribute ‘textFile’
第一个错误我是通过如下解决的:
spark = SparkSession(sc)
解决第一个错误之后,我再次运行的时候就开始报第二个错误了,第二个错误我是这样解决的:
from pyspark.sql import SQLContext
spark.sparkContext.textFile('filepath')
具体可以看我们上面对于的代码就可以明白了。
另外,很明显可以看见第三题第二问后面抛出了异常:
** BEGIN NESTED EXCEPTION **
javax.net.ssl.SSLException
MESSAGE: closing inbound before receiving peer's close_notify
STACKTRACE:
javax.net.ssl.SSLException: closing inbound before receiving peer's close_notify
at sun.security.ssl.Alert.createSSLException(Alert.java:133)
at sun.security.ssl.Alert.createSSLException(Alert.java:117)
at sun.security.ssl.TransportContext.fatal(TransportContext.java:340)
at sun.security.ssl.TransportContext.fatal(TransportContext.java:296)
at sun.security.ssl.TransportContext.fatal(TransportContext.java:287)
at sun.security.ssl.SSLSocketImpl.shutdownInput(SSLSocketImpl.java:737)
at sun.security.ssl.SSLSocketImpl.shutdownInput(SSLSocketImpl.java:716)
at com.mysql.jdbc.MysqlIO.quit(MysqlIO.java:2239)
at com.mysql.jdbc.ConnectionImpl.realClose(ConnectionImpl.java:4267)
at com.mysql.jdbc.ConnectionImpl.close(ConnectionImpl.java:1531)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.org$apache$spark$sql$execution$datasources$jdbc$JDBCRDD$$close$1(JDBCRDD.scala:259)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$$anonfun$compute$1.apply$mcV$sp(JDBCRDD.scala:308)
at org.apache.spark.util.CompletionIterator$$anon$1.completion(CompletionIterator.scala:44)
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:33)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.agg_doAggregateWithoutKey_0$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$11$$anon$1.hasNext(WholeStageCodegenExec.scala:619)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
at org.apache.spark.scheduler.Task.run(Task.scala:121)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
这是因为与MySQL数据库的SSL连接失败了,我们只需要将数据源的URL后面添加**?useSSL=false**就可以解决,也就是禁用SSL:
但是它还是抛出了异常,只是异常没有之前那么多了,我上网查阅了一下相关错误,好像这样添加不能完全禁用SSL,具体原因我也不知道,可能跟底层C语言有关,这个我不了解,所以就先这样了。
本次实验到这里就结束了,谢谢你们的阅读!
版权归原作者 -北天- 所有, 如有侵权,请联系我们删除。