在数据标注中,X-AnyLabeling 是一款强大的工具,它集成了先进的** AI 推理引擎**和丰富的功能特性。
专注于实际应用场景,具备高度的自主学习和自动化能力,大幅减少了重复性标注工作上的时间投入。
X-AnyLabeling 支持多种视觉任务的标注:
- 支持
GPU
加速推理。 - 支持一键预测所有图像。
- 支持
图像
和视频
处理。 - 支持自定义模型和二次开发。
- 支持一键导入和导出多种标签格式,如 COCO\VOC\YOLO\DOTA\MOT\MASK\PPOCR 等;
- 支持多种图像标注样式,包括
多边形
、矩形
、旋转框
、圆形
、线条
、点
,以及文本检测
、识别
和KIE
标注; - 支持各类视觉任务,如
图像分类
、目标检测
、实例分割
、姿态估计
、旋转检测
、多目标跟踪
、光学字符识别
、图像文本描述
、车道线检测
、分割一切
等。
X-AnyLabeling 的核心优势在于其能够高效自动地处理各种复杂的标注任务。
无论是精细的物体分割还是大规模的数据标注,X-AnyLabeling 都能够以卓越的精度和速度完成。
标注界面,如下所示:
点击“Language”可以选择中文模式的
开源地址:https://github.com/CVHub520/X-AnyLabeling/tree/main
安装指南:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/get_started.md
用户手册:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/user_guide.md
模型库参考:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/model_zoo.md
X-AnyLabeling提供多种模型库
更多模型库参考:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/model_zoo.md
1、图像分类
名称描述配置大小链接pulc_person_attribute.onnxPersonAttribute-PULCpulc_person_attribute.yaml6.59MB百度网盘 | GitHubpulc_vehicle_attribute.onnxVehicleAttribute-PULCpulc_vehicle_attribute.yaml6.55MB百度网盘 | GitHubinternimage_l_22kto1k_384.onnxInternImage-Largeinternimage_l_22kto1k_384.yaml853.16MB百度网盘 | GitHubyolov5s-cls.onnxYOLOv5-Cls-ImageNetyolov5s_cls.yaml20.81MB百度网盘 | GitHubyolov8s-cls.onnxYOLOv8-Cls-ImageNetyolov8s_cls.yaml24.28MB百度网盘 | GitHubyolo11s-cls.onnxYOLO11-Cls-ImageNetyolo11s_cls.yaml25.67MB百度网盘 | GitHub
2、关键点检测
脸部关键点检测
名称描述配置大小链接yolov6lite_l_face.onnxFacial Landmark Detectionyolov6lite_l_face.yaml4.16MB百度网盘 | githubyolov6lite_m_face.onnxFacial Landmark Detectionyolov6lite_m_face.yaml3.00MB百度网盘 | githubyolov6lite_s_face.onnxFacial Landmark Detectionyolov6lite_s_face.yaml2.10MB百度网盘 | github姿态估计
名称描述配置大小链接yolo11s-pose.onnxYOLO11-COCOyolo11s_pose.yaml38.09MB百度网盘 | githubyolov8n-pose.onnxYOLOv8-COCOyolov8n_pose.yaml12.75MB百度网盘 | githubyolov8x-pose-p6.onnxYOLOv8-COCOyolov8x_pose_p6.yaml378.92MB百度网盘 | githubdw-ll_ucoco_384.onnxDWPose(人体 2d 关键点)yolox_l_dwpose_ucoco.yaml128.17MB百度网盘 | githubyolox_l.onnxYOLOX(人体 2d 关键点)yolox_l_dwpose_ucoco.yaml206.71MB百度网盘 | githubrtmo_m.onnxRTMO(人体 2d 关键点)rtmdet_m_coco_person_rtmo_m.yaml85.13MB百度网盘 | githubrtmdet_m_640-8xb32_coco-person.onnxRTMDet(人体 2d 关键点)rtmdet_m_640-8xb32_coco-person.onnx104.25MB百度网盘 | github3、车道线检测
名称描述配置大小链接clrnet_tusimple_r18.onnxCLRNet-Tusimple (CVPR2022)clrnet_tusimple_r18.yaml59.04MB百度网盘 | github
4、多目标追踪
名称描述配置大小链接yolov5s.onnxYOLOv5s-Det-BoT-SORTyolov5s_det_botsort.yaml27.98MB百度网盘 | githubyolov8s.onnxYOLOv8s-Det-BoT-SORTyolov8s_det_botsort.yaml42.75MB百度网盘 | githubyolov8n_obb_car_bus.onnxYOLOv8n-Obb-BoT-SORTyolov8n_obb_botsort.yaml12.02MB百度网盘 | githubyolov8m-seg.onnxYOLOv8m-Seg-Bytetrackyolov8m_seg_bytetrack.yaml104.23MB百度网盘 | githubyolov8x-pose-p6.onnxYOLOv8x-Pose-P6-BoT-SORTyolov8x_pose_p6_botsort.yaml378.92MB百度网盘 | githubyolo11s.onnxYOLO11s-Det-BoT-SORTyolo11s_det_botsort.yaml36.27MB百度网盘 | githubyolo11s_obb_car_bus.onnxYOLO11s-Obb-BoT-SORTyolo11s_obb_botsort.yaml37.36MB百度网盘 | githubyolo11s-seg.onnxYOLO11s-Seg-BoT-SORTyolo11s_seg_botsort.yaml38.77MB百度网盘 | githubyolo11s-pose.onnxYOLO11s-Pose-BoT-SORTyolo11s_pose_botsort.yaml38.09MB百度网盘 | github
5、目标检测
水平目标检测
名称描述配置大小链接damoyolo_tinynasL20_T_420.onnxDAMO-YOLO-COCOdamo_yolo_t.yaml32.45MB百度网盘 | githubdamoyolo_tinynasL25_S_460.onnxDAMO-YOLO-COCOdamo_yolo_s.yaml62.09MB百度网盘 | githubdamoyolo_tinynasL35_M_492.onnxDAMO-YOLO-COCOdamo_yolo_m.yaml107.58MB百度网盘 | githubdamoyolo_tinynasL45_L_508.onnxDAMO-YOLO-COCOdamo_yolo_l.yaml160.52MB百度网盘 | githubGold_n_dist.onnxGold-YOLO-COCOgold_yolo_n.yaml23.58MB百度网盘 | githubGold_s_pre_dist.onnxGold-YOLO-COCOgold_yolo_s.yaml89.06MB百度网盘 | githubGold_m_pre_dist.onnxGold-YOLO-COCOgold_yolo_m.yaml169.88MB百度网盘 | githubGold_l_pre_dist.onnxGold-YOLO-COCOgold_yolo_l.yaml286.79MB百度网盘 | githubrtdetr_r50vd_6x_coco.onnxRT-DETR-COCOrtdetr_r50.yaml160.96MB百度网盘 | githubrtdetrv2_r101vd_6x_coco.onnxRT-DETRv2-X-COCOrtdetrv2x.yaml286.48MB百度网盘 | githubrtdetrv2_r50vd_6x_coco.onnxRT-DETRv2-L-COCOrtdetrv2l.yaml161.38MB百度网盘 | githubrtdetrv2_r50vd_m_7x_coco.onnxRT-DETRv2-M*-COCOrtdetrv2m7x.yaml126.52MB百度网盘 | githubrtdetrv2_r34vd_120e_coco.onnxRT-DETRv2-M-COCOrtdetrv2m.yaml119.73MB百度网盘 | githubrtdetrv2_r18vd_120e_coco.onnxRT-DETRv2-S-COCOrtdetrv2s.yaml76.80MB百度网盘 | githubyolo_nas_l.onnxYOLO-NAS-COCOyolo_nas_l.yaml160.38MB百度网盘 | githubyolo_nas_m.onnxYOLO-NAS-COCOyolo_nas_m.yaml121.87MB百度网盘 | githubyolo_nas_s.onnxYOLO-NAS-COCOyolo_nas_s.yaml46.62MB百度网盘 | githubyolov5x.onnxYOLOv5-COCOyolov5x.yaml331.19MB百度网盘 | githubyolov5l.onnxYOLOv5-COCOyolov5l.yaml177.94MB百度网盘 | githubyolov5m.onnxYOLOv5-COCOyolov5m.yaml81.19MB百度网盘 | githubyolov5s.onnxYOLOv5-COCOyolov5s.yaml27.98MB百度网盘 | githubyolov5n.onnxYOLOv5-COCOyolov5n.yaml7.54MB百度网盘 | githubyolov6x_mbla.onnxYOLOv6-COCOyolov6x_mbla.yaml300.95MB百度网盘 | githubyolov6l_mbla.onnxYOLOv6-COCOyolov6l_mbla.yaml176.72MB百度网盘 | githubyolov6m_mbla.onnxYOLOv6-COCOyolov6m_mbla.yaml99.61MB百度网盘 | githubyolov6s_mbla.onnxYOLOv6-COCOyolov6s_mbla.yaml44.49MB百度网盘 | githubyolov6s.onnxYOLOv6-COCOyolov6s.yaml70.88MB百度网盘 | githubyolov6s6.onnxYOLOv6-COCOyolov6s6.yaml158.47MB百度网盘 | githubyolov7.onnxYOLOv7-COCOyolov7.yaml140.90MB百度网盘 | githubyolov8x.onnxYOLOv8-COCOyolov8x.yaml260.37MB百度网盘 | githubyolov8l.onnxYOLOv8-COCOyolov8l.yaml166.79MB百度网盘 | githubyolov8m.onnxYOLOv8-COCOyolov8m.yaml98.94MB百度网盘 | githubyolov8s.onnxYOLOv8-COCOyolov8s.yaml42.75MB百度网盘 | githubyolov8n.onnxYOLOv8-COCOyolov8n.yaml12.21MB百度网盘 | githubyolov8s.onnxYOLOv8 with SAHI-COCOyolov8s_sahi.yaml42.75MB百度网盘 | githubyolov8x6-oiv7.onnxYOLOv8-Open Image V7yolov8x6_oiv7.yaml374.51MB百度网盘 | githubyolov8x-oiv7.onnxYOLOv8-Open Image V7yolov8x_oiv7.yaml262.24MB百度网盘 | githubyolov8l-oiv7.onnxYOLOv8-Open Image V7yolov8l_oiv7.yaml168.28MB百度网盘 | githubyolov8m-oiv7.onnxYOLOv8-Open Image V7yolov8m_oiv7.yaml100.05MB百度网盘 | githubyolov8s-oiv7.onnxYOLOv8-Open Image V7yolov8s_oiv7.yaml43.47MB百度网盘 | githubyolov8n-oiv7.onnxYOLOv8-Open Image V7yolov8n_oiv7.yaml13.47MB百度网盘 | githubyolov9c.onnxYOLOv9-COCOyolov9c.yaml195.34MB百度网盘 | githubyolov9e.onnxYOLOv9-COCOyolov9e.yaml265.43MB百度网盘 | githubgelan-c.onnxYOLOv9-COCOgelan-c.yaml97.43MB百度网盘 | githubgelan-e.onnxYOLOv9-COCOgelan-e.yaml221.94MB百度网盘 | githubyolov10n.onnxYOLOv10-COCOyolov10n.yaml8.98MB百度网盘 | githubyolov10s.onnxYOLOv10-COCOyolov10s.yaml27.86MB百度网盘 | githubyolov10m.onnxYOLOv10-COCOyolov10m.yaml58.81MB百度网盘 | githubyolov10b.onnxYOLOv10-COCOyolov10b.yaml72.95MB百度网盘 | githubyolov10l.onnxYOLOv10-COCOyolov10l.yaml93.20MB百度网盘 | githubyolov10x.onnxYOLOv10-COCOyolov10x.yaml112.68MB百度网盘 | githubyolo11s.onnxYOLO11-COCOyolo11s.yaml36.27MB百度网盘 | github旋转目标检测(OBB)
名称描述配置大小链接yolov5n_obb_drone_vehicle.onnxYOLOv5-OBB-DroneVehicleyolov5n_obb_drone_vehicle.yaml8.39MB百度网盘 | githubyolov5s_obb_csl_dotav10.onnxYOLOv5-OBB-DOTA-v1.0yolov5s_obb_csl_dotav10.yaml29.77MB百度网盘 | githubyolov5m_obb_csl_dotav15.onnxYOLOv5-OBB-DOTA-v1.5yolov5m_obb_csl_dotav15.yaml83.59MB百度网盘 | githubyolov5m_obb_csl_dotav20.onnxYOLOv5-OBB-DOTA-v2.0yolov5m_obb_csl_dotav20.yaml83.62MB百度网盘 | githubyolov8s-obb.onnxYOLOv8-OBB-DOTA-v1.0yolov8s_obb.yaml43.84MB百度网盘 | githubyolo11s-obb.onnxYOLO11s-Obb-DOTA-v1.0yolo11s_obb.yaml37.36MB百度网盘 | github6、光学字符识别
名称描述配置大小链接doclayout_yolo_docstructbench_imgsz1024.onnx文档版面分析模型doclayout_yolo.yaml72.22MB百度网盘 | githubch_PP-OCRv4_det_infer.onnx超轻量模型,支持中英文、多语种文本检测模型ch_ppocr_v4.yaml4.53MB百度网盘 | githubch_ppocr_mobile_v2.0_cls_infer.onnx原始分类器模型,对检测到的文本行文字角度分类ch_ppocr_v4.yaml569KB百度网盘 | githubch_PP-OCRv4_rec_infer.onnxUltra-lightweight model supporting Chinese, English, and digits recognition modelch_ppocr_v4.yaml10.33MB百度网盘 | githubch_PP-OCRv4_det_infer.onnx超轻量模型,支持中英文、多语种文本检测模型japan_ppocr.yaml4.53MB百度网盘 | githubch_ppocr_mobile_v2.0_cls_infer.onnx原始分类器模型,对检测到的文本行文字角度分类japan_ppocr.yaml569KB百度网盘 | githubjapan_PP-OCRv3_rec_infer.onnx超轻量日文识别模型japan_ppocr.yaml9.62MB百度网盘 | github
7、分割一切模型
通用场景
名称描述配置大小链接sam2_hiera_tiny.encoder.onnxSAM2sam2_hiera_tiny.yaml128.04MB百度网盘 | githubsam2_hiera_tiny.decoder.onnxSAM2sam2_hiera_tiny.yaml19.68MB百度网盘 | githubsam2_hiera_small.encoder.onnxSAM2sam2_hiera_small.yaml155.17MB百度网盘 | githubsam2_hiera_small.decoder.onnxSAM2sam2_hiera_small.yaml19.68MB百度网盘 | githubsam2_hiera_base_plus.encoder.onnxSAM2sam2_hiera_base.yaml324.04MB百度网盘 | githubsam2_hiera_base_plus.decoder.onnxSAM2sam2_hiera_base.yaml19.68MB百度网盘 | githubsam2_hiera_large.encoder.onnxSAM2sam2_hiera_large.yaml848.16MB百度网盘 | githubsam2_hiera_large.decoder.onnxSAM2sam2_hiera_large.yaml19.68MB百度网盘 | githubedge_sam_encoder.onnxEdgeSAMedge_sam.yaml21.02MB百度网盘 | githubedge_sam_decoder.onnxEdgeSAMedge_sam.yaml17.78MB百度网盘 | githubsam_vit_b_01ec64.encoder.onnxSAM ViT-base encodersegment_anything_vit_b.yaml342.58MB百度网盘 | githubsam_vit_b_01ec64.decoder.onnxSAM ViT-base decodersegment_anything_vit_b.yaml15.74MB百度网盘 | githubsam_vit_b_01ec64.encoder.quant.onnxSAM ViT-base encoder(量化版本)segment_anything_vit_b_quant.yaml103.78MB百度网盘 | githubsam_vit_b_01ec64.decoder.quant.onnxSAM ViT-base decoder(量化版本)segment_anything_vit_b_quant.yaml8.34MB百度网盘 | githubsam_vit_l_0b3195.encoder.onnxSAM ViT-large encodersegment_anything_vit_l.yaml1.15GB百度网盘 | githubsam_vit_l_0b3195.decoder.onnxSAM ViT-large decodersegment_anything_vit_l.yaml15.74MB百度网盘 | githubsam_vit_l_0b3195.encoder.quant.onnxSAM ViT-large encoder(量化版本)segment_anything_vit_l_quant.yaml317.18MB百度网盘 | githubsam_vit_l_0b3195.decoder.quant.onnxSAM ViT-large decoder(量化版本)segment_anything_vit_l_quant.yaml8.34MB百度网盘 | githubmobile_sam.encoder.onnxMobileSAM encodermobile_sam_vit_h.yaml26.85MB百度网盘 | githubsam_vit_h_4b8939.decoder.quant.onnxMobileSAM decodermobile_sam_vit_h.yaml8.34MB百度网盘 | githubsam_vit_h_4b8939.encoder.quant.onnxSAM ViT-huge encoder(量化版本)segment_anything_vit_h_quant.yaml626.40MB百度网盘 | githubsam_vit_h_4b8939.decoder.quant.onnxSAM ViT-huge decoder(量化版本)segment_anything_vit_h_quant.yaml8.34MB百度网盘 | githubefficientvit_sam_l0_vit_h.encoder.onnxEfficientViT-SAM ViT-huge encoderefficientvit_sam_l0_vit_h.yaml117.25MB百度网盘 | githubefficientvit_sam_l0_vit_h.decoder.onnxEfficientViT-SAM ViT-huge decoderefficientvit_sam_l0_vit_h.yaml15.63MB百度网盘 | githubefficientvit_sam_l1_vit_h.encoder.onnxEfficientViT-SAM ViT-huge encoderefficientvit_sam_l1_vit_h.yaml166.31MB百度网盘 | githubefficientvit_sam_l1_vit_h.decoder.onnxEfficientViT-SAM ViT-huge decoderefficientvit_sam_l1_vit_h.yaml15.63MB百度网盘 | githubsam_hq_vit_b_encoder.onnxHQ-SAM ViT-base encodersam_hq_vit_b.yaml342.37MB百度网盘 | githubsam_hq_vit_b_decoder.onnxHQ-SAM ViT-base decodersam_hq_vit_b.yaml19.74MB百度网盘 | githubsam_hq_vit_l_encoder.onnxHQ-SAM ViT-large encodersam_hq_vit_l.yaml1.15GB百度网盘 | githubsam_hq_vit_l_decoder.onnxHQ-SAM ViT-large decodersam_hq_vit_l.yaml20.74MB百度网盘 | githubsam_hq_vit_l_encoder_quant.onnxHQ-SAM ViT-large encoder(量化版本)sam_hq_vit_l_quant.yaml307.96MB百度网盘 | githubsam_hq_vit_l_decoderHQ-SAM ViT-large decodersam_hq_vit_l_quant.yaml20.74MB百度网盘 | githubsam_hq_vit_h_encoder_quant.onnxHQ-SAM ViT-huge encoder(量化版本)sam_hq_vit_h_quant.yaml625.55MB百度网盘 | githubsam_hq_vit_h_decoderHQ-SAM ViT-huge decodersam_hq_vit_h_quant.yaml21.74MB百度网盘 | github医学场景
名称描述配置大小链接sam-med2d_b.encoder.onnxSAM-Med2D ViT-base encodersam_med2d_vit_b.yaml1019.49MB百度网盘 | githubsam-med2d_b.decoder.onnxSAM-Med2D ViT-base decodersam_med2d_vit_b.yaml15.60MB百度网盘 | githubmedsam_vit_b.encoder.onnxMedSAM ViT-base encodermedsam_vit_b.yaml342.58MB百度网盘 | githubmedsam_vit_b.decoder.onnxMedSAM ViT-base decodermedsam_vit_b.yaml15.74MB百度网盘 | githubsam_model_best_large_ssl_buidnewprocess.encoder.onnxLVMSAM-超声乳腺癌分割模型 ViT-base encoderlvm_sam_ssk_buid_vit_b.yaml342.58MB百度网盘 | githubsam_model_best_large_ssl_buidnewprocess.decoder.onnxLVMSAM-超声乳腺癌分割模型 ViT-base decoderlvm_sam_ssk_buid_vit_b.yaml15.74MB百度网盘 | githubsam_model_best_large_ssl_isiconlytrain.encoder.onnxLVMSAM-皮肤镜病灶分割模型 ViT-base encoderlvm_sam_ssk_isic_vit_b.yaml342.58MB百度网盘 | githubsam_model_best_large_ssl_isiconlytrain.decoder.onnxLVMSAM-皮肤镜病灶分割模型 ViT-base decoderlvm_sam_ssk_isic_vit_b.yaml15.74MB百度网盘 | githubsam_model_best_large_ssl_kvasir.encoder.onnxLVMSAM-结直肠息肉分割模型 ViT-base encoderlvm_sam_ssk_kvasir_vit_b.yaml342.58MB百度网盘 | githubsam_model_best_large_ssl_kvasir.decoder.onnxLVMSAM-结直肠息肉分割模型 ViT-base decoderlvm_sam_ssk_kvasir_vit_b.yaml15.74MB百度网盘 | github8、图像分割
名称描述配置大小链接yolov5s-seg.onnxYOLOv5-COCOyolov5s_seg.yaml29.45MB百度网盘 | githubyolov8x-seg.onnxYOLOv8-COCOyolov8x_seg.yaml274.10MB百度网盘 | githubyolov8l-seg.onnxYOLOv8-COCOyolov8l_seg.yaml175.59MB百度网盘 | githubyolov8m-seg.onnxYOLOv8-COCOyolov8m_seg.yaml104.23MB百度网盘 | githubyolov8s-seg.onnxYOLOv8-COCOyolov8s_seg.yaml45.25MB百度网盘 | githubyolov8n-seg.onnxYOLOv8-COCOyolov8n_seg.yaml13.18MB百度网盘 | githubyolo11s-seg.onnxYOLO11-COCOyolo11s_seg.yaml38.77MB百度网盘 | github
9、图像抠图
名称描述配置大小链接bria-rmbg-1.4.onnxRMBG v1.4 (BRIA AI)rmbg_v14.yaml167.99MB百度网盘 | github
10、多任务
名称描述配置大小链接resnet50.onnxResNet50-ImageNet(检测+分类级联模型)yolov5s_resnet50.yaml97.42MB百度网盘 | githubyolov5s.onnxYOLOv5-COCO(检测+分类级联模型)yolov5s_resnet50.yaml27.98MB百度网盘 | githubmobile_sam.encoder.onnxMobileSAM encoder(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml26.85MB百度网盘 | githubsam_vit_h_4b8939.decoder.quant.onnxMobileSAM decoder(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml8.34MB百度网盘 | githubyolov5s.onnxYOLOv5-COCO(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml27.98MB百度网盘 | githubefficientvit_sam_l0_vit_h.encoder.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml117.25MB百度网盘 | githubefficientvit_sam_l0_vit_h.decoder.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml15.63MB百度网盘 | githubyolov8n.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml12.21MB百度网盘 | githubyolov5m.onnxYOLOv5-RAMyolov5m_ram.yaml81.19MB百度网盘 | githubram_swin_large_14m.onnxYOLOv5-RAMyolov5m_ram.yaml865.66MB百度网盘 | githubyolov5_plate_detect.onnxYOLOv5(车牌识别)yolov5_car_plate.yaml3.65MB百度网盘 | githubyolov5_plate_rec_color.onnxYOLOv5(车牌识别)yolov5_car_plate.yaml702KB百度网盘 | githubedge_sam_encoder.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml21.02MB百度网盘 | githubedge_sam_decoder.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml17.78MB百度网盘 | githubvit-b-16.img.fp16.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml3.51MB百度网盘 | githubvit-b-16.txt.fp16.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml2.15MB百度网盘 | githubvit-b-16.img.fp16.onnx.extra_fileEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml164.40MB百度网盘 | githubvit-b-16.txt.fp16.onnx.extra_fileEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml194.68MB百度网盘 | githubgroundingdino_swint_ogc_quant.onnxGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml964.04MB百度网盘 | githubsam_hq_vit_l_encoder_quant.onnxGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml307.96MB百度网盘 | githubsam_hq_vit_l_decoderGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml20.74MB百度网盘 | githubsam2_hiera_large.encoder.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml848.16MB百度网盘 | githubsam2_hiera_large.decoder.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml19.68MB百度网盘 | githubgroundingdino_swint_ogc_quant.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml171.28MB百度网盘 | github
11、Open-Set Grounded Model
名称描述配置大小链接yolov8x-worldv2.onnxYOLOv8-COCOyolov8x_worldv2.yaml276.38MB百度网盘 | githubyolov8l-worldv2-cc3m.onnxYOLOv8-CC3Myolov8l_worldv2_cc3m.yaml177.39MB百度网盘 | githubyolov8l-worldv2.onnxYOLOv8-COCOyolov8l_worldv2.yaml177.39MB百度网盘 | githubyolov8m-worldv2.onnxYOLOv8-COCOyolov8m_worldv2.yaml107.21MB百度网盘 | githubyolov8s-worldv2.onnxYOLOv8-COCOyolov8s_worldv2.yaml47.97MB百度网盘 | githubgroundingdino_swint_ogc_quant.onnxGroundingDINOgroundingdino_swint_ogc_quant.yaml171.28MB百度网盘 | githubgroundingdino_swinb_cogcoor_quant.onnxGroundingDINOgroundingdino_swinb_cogcoor_quant.yaml258.90MB百度网盘 | githubram_swin_large_14m.onnxRecognize Anythingram_swin_large_14m.yaml865.66MB百度网盘 | githubram_plus_swin_large_14m.onnxRecognize Anything Pluseram_plus_swin_large_14m.yaml1.74GB百度网盘 | github
12、深度估计
名称描述配置大小链接depth_anything_vits14.onnxDepthAnythingdepth_anything_vit_s.yaml94.48MB百度网盘 | githubdepth_anything_vitb14.onnxDepthAnythingdepth_anything_vit_b.yaml370.91MB百度网盘 | githubdepth_anything_vitl14.onnxDepthAnythingdepth_anything_vit_l.yaml1.25GB百度网盘 | githubdepth_anything_v2_vits.onnxDepthAnythingV2depth_anything_v2_vit_s.yaml94.77MB百度网盘 | githubdepth_anything_v2_vitb.onnxDepthAnythingV2depth_anything_v2_vit_b.yaml371.20MB百度网盘 | githubdepth_anything_v2_vitl.onnxDepthAnythingV2depth_anything_v2_vit_l.yaml1.25GB百度网盘 | github
13、交互式视频目标分割
名称描述配置大小链接sam2_hiera_tiny.ptSAM 2sam2_hiera_tiny_video.yaml148.68MB百度网盘 | githubsam2_hiera_small.ptSAM 2sam2_hiera_small_video.yaml175.77MB百度网盘 | githubsam2_hiera_base_plus.ptSAM 2sam2_hiera_base_video.yaml308.51MB百度网盘 | githubsam2_hiera_large.ptSAM 2sam2_hiera_large_video.yaml856.35MB百度网盘 | github
X-AnyLabeling教程示例
Classification - Image-Level- Shape-Level
Detection - HBB Object Detection- OBB Object Detection
Segmentation - Instance Segmentation- Binary Semantic Segmentation- Multiclass Semantic Segmentation
Description - Tagging- Captioning
Estimation - Pose Estimation- Depth Estimation
OCR - Text Recognition- Key Information Extraction
MOT - Tracking by HBB Object Detection- Tracking by OBB Object Detection- Tracking by Instance Segmentation- Tracking by Pose Estimation
iVOS
Matting - Image Matting
目标检测,标注示例
深度估计标注示例
关键点姿态估计,标注示例
视频分割,标注示例
分享完成~
版权归原作者 一颗小树x 所有, 如有侵权,请联系我们删除。