0


标注工具 X-AnyLabeling | AI 推理引擎 | 自动标注 | 支持多种视觉任务

在数据标注中,X-AnyLabeling 是一款强大的工具,它集成了先进的** AI 推理引擎**和丰富的功能特性。

专注于实际应用场景,具备高度的自主学习和自动化能力,大幅减少了重复性标注工作上的时间投入。

X-AnyLabeling 支持多种视觉任务的标注:

  • 支持GPU加速推理。
  • 支持一键预测所有图像。
  • 支持图像视频处理。
  • 支持自定义模型和二次开发。
  • 支持一键导入和导出多种标签格式,如 COCO\VOC\YOLO\DOTA\MOT\MASK\PPOCR 等;
  • 支持多种图像标注样式,包括 多边形矩形旋转框圆形线条,以及 文本检测识别KIE 标注;
  • 支持各类视觉任务,如图像分类目标检测实例分割姿态估计旋转检测多目标跟踪光学字符识别图像文本描述车道线检测分割一切等。

X-AnyLabeling 的核心优势在于其能够高效自动地处理各种复杂的标注任务。

无论是精细的物体分割还是大规模的数据标注,X-AnyLabeling 都能够以卓越的精度和速度完成。

标注界面,如下所示:

点击“Language”可以选择中文模式的

开源地址:https://github.com/CVHub520/X-AnyLabeling/tree/main

安装指南:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/get_started.md

用户手册:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/user_guide.md

模型库参考:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/model_zoo.md

X-AnyLabeling提供多种模型库

更多模型库参考:https://github.com/CVHub520/X-AnyLabeling/blob/main/docs/zh_cn/model_zoo.md

1、图像分类

名称描述配置大小链接pulc_person_attribute.onnxPersonAttribute-PULCpulc_person_attribute.yaml6.59MB百度网盘 | GitHubpulc_vehicle_attribute.onnxVehicleAttribute-PULCpulc_vehicle_attribute.yaml6.55MB百度网盘 | GitHubinternimage_l_22kto1k_384.onnxInternImage-Largeinternimage_l_22kto1k_384.yaml853.16MB百度网盘 | GitHubyolov5s-cls.onnxYOLOv5-Cls-ImageNetyolov5s_cls.yaml20.81MB百度网盘 | GitHubyolov8s-cls.onnxYOLOv8-Cls-ImageNetyolov8s_cls.yaml24.28MB百度网盘 | GitHubyolo11s-cls.onnxYOLO11-Cls-ImageNetyolo11s_cls.yaml25.67MB百度网盘 | GitHub

2、关键点检测

  • 脸部关键点检测
    名称描述配置大小链接yolov6lite_l_face.onnxFacial Landmark Detectionyolov6lite_l_face.yaml4.16MB百度网盘 | githubyolov6lite_m_face.onnxFacial Landmark Detectionyolov6lite_m_face.yaml3.00MB百度网盘 | githubyolov6lite_s_face.onnxFacial Landmark Detectionyolov6lite_s_face.yaml2.10MB百度网盘 | github

  • 姿态估计
    名称描述配置大小链接yolo11s-pose.onnxYOLO11-COCOyolo11s_pose.yaml38.09MB百度网盘 | githubyolov8n-pose.onnxYOLOv8-COCOyolov8n_pose.yaml12.75MB百度网盘 | githubyolov8x-pose-p6.onnxYOLOv8-COCOyolov8x_pose_p6.yaml378.92MB百度网盘 | githubdw-ll_ucoco_384.onnxDWPose(人体 2d 关键点)yolox_l_dwpose_ucoco.yaml128.17MB百度网盘 | githubyolox_l.onnxYOLOX(人体 2d 关键点)yolox_l_dwpose_ucoco.yaml206.71MB百度网盘 | githubrtmo_m.onnxRTMO(人体 2d 关键点)rtmdet_m_coco_person_rtmo_m.yaml85.13MB百度网盘 | githubrtmdet_m_640-8xb32_coco-person.onnxRTMDet(人体 2d 关键点)rtmdet_m_640-8xb32_coco-person.onnx104.25MB百度网盘 | github

    3、车道线检测

    名称描述配置大小链接clrnet_tusimple_r18.onnxCLRNet-Tusimple (CVPR2022)clrnet_tusimple_r18.yaml59.04MB百度网盘 | github

    4、多目标追踪

    名称描述配置大小链接yolov5s.onnxYOLOv5s-Det-BoT-SORTyolov5s_det_botsort.yaml27.98MB百度网盘 | githubyolov8s.onnxYOLOv8s-Det-BoT-SORTyolov8s_det_botsort.yaml42.75MB百度网盘 | githubyolov8n_obb_car_bus.onnxYOLOv8n-Obb-BoT-SORTyolov8n_obb_botsort.yaml12.02MB百度网盘 | githubyolov8m-seg.onnxYOLOv8m-Seg-Bytetrackyolov8m_seg_bytetrack.yaml104.23MB百度网盘 | githubyolov8x-pose-p6.onnxYOLOv8x-Pose-P6-BoT-SORTyolov8x_pose_p6_botsort.yaml378.92MB百度网盘 | githubyolo11s.onnxYOLO11s-Det-BoT-SORTyolo11s_det_botsort.yaml36.27MB百度网盘 | githubyolo11s_obb_car_bus.onnxYOLO11s-Obb-BoT-SORTyolo11s_obb_botsort.yaml37.36MB百度网盘 | githubyolo11s-seg.onnxYOLO11s-Seg-BoT-SORTyolo11s_seg_botsort.yaml38.77MB百度网盘 | githubyolo11s-pose.onnxYOLO11s-Pose-BoT-SORTyolo11s_pose_botsort.yaml38.09MB百度网盘 | github

    5、目标检测

  • 水平目标检测
    名称描述配置大小链接damoyolo_tinynasL20_T_420.onnxDAMO-YOLO-COCOdamo_yolo_t.yaml32.45MB百度网盘 | githubdamoyolo_tinynasL25_S_460.onnxDAMO-YOLO-COCOdamo_yolo_s.yaml62.09MB百度网盘 | githubdamoyolo_tinynasL35_M_492.onnxDAMO-YOLO-COCOdamo_yolo_m.yaml107.58MB百度网盘 | githubdamoyolo_tinynasL45_L_508.onnxDAMO-YOLO-COCOdamo_yolo_l.yaml160.52MB百度网盘 | githubGold_n_dist.onnxGold-YOLO-COCOgold_yolo_n.yaml23.58MB百度网盘 | githubGold_s_pre_dist.onnxGold-YOLO-COCOgold_yolo_s.yaml89.06MB百度网盘 | githubGold_m_pre_dist.onnxGold-YOLO-COCOgold_yolo_m.yaml169.88MB百度网盘 | githubGold_l_pre_dist.onnxGold-YOLO-COCOgold_yolo_l.yaml286.79MB百度网盘 | githubrtdetr_r50vd_6x_coco.onnxRT-DETR-COCOrtdetr_r50.yaml160.96MB百度网盘 | githubrtdetrv2_r101vd_6x_coco.onnxRT-DETRv2-X-COCOrtdetrv2x.yaml286.48MB百度网盘 | githubrtdetrv2_r50vd_6x_coco.onnxRT-DETRv2-L-COCOrtdetrv2l.yaml161.38MB百度网盘 | githubrtdetrv2_r50vd_m_7x_coco.onnxRT-DETRv2-M*-COCOrtdetrv2m7x.yaml126.52MB百度网盘 | githubrtdetrv2_r34vd_120e_coco.onnxRT-DETRv2-M-COCOrtdetrv2m.yaml119.73MB百度网盘 | githubrtdetrv2_r18vd_120e_coco.onnxRT-DETRv2-S-COCOrtdetrv2s.yaml76.80MB百度网盘 | githubyolo_nas_l.onnxYOLO-NAS-COCOyolo_nas_l.yaml160.38MB百度网盘 | githubyolo_nas_m.onnxYOLO-NAS-COCOyolo_nas_m.yaml121.87MB百度网盘 | githubyolo_nas_s.onnxYOLO-NAS-COCOyolo_nas_s.yaml46.62MB百度网盘 | githubyolov5x.onnxYOLOv5-COCOyolov5x.yaml331.19MB百度网盘 | githubyolov5l.onnxYOLOv5-COCOyolov5l.yaml177.94MB百度网盘 | githubyolov5m.onnxYOLOv5-COCOyolov5m.yaml81.19MB百度网盘 | githubyolov5s.onnxYOLOv5-COCOyolov5s.yaml27.98MB百度网盘 | githubyolov5n.onnxYOLOv5-COCOyolov5n.yaml7.54MB百度网盘 | githubyolov6x_mbla.onnxYOLOv6-COCOyolov6x_mbla.yaml300.95MB百度网盘 | githubyolov6l_mbla.onnxYOLOv6-COCOyolov6l_mbla.yaml176.72MB百度网盘 | githubyolov6m_mbla.onnxYOLOv6-COCOyolov6m_mbla.yaml99.61MB百度网盘 | githubyolov6s_mbla.onnxYOLOv6-COCOyolov6s_mbla.yaml44.49MB百度网盘 | githubyolov6s.onnxYOLOv6-COCOyolov6s.yaml70.88MB百度网盘 | githubyolov6s6.onnxYOLOv6-COCOyolov6s6.yaml158.47MB百度网盘 | githubyolov7.onnxYOLOv7-COCOyolov7.yaml140.90MB百度网盘 | githubyolov8x.onnxYOLOv8-COCOyolov8x.yaml260.37MB百度网盘 | githubyolov8l.onnxYOLOv8-COCOyolov8l.yaml166.79MB百度网盘 | githubyolov8m.onnxYOLOv8-COCOyolov8m.yaml98.94MB百度网盘 | githubyolov8s.onnxYOLOv8-COCOyolov8s.yaml42.75MB百度网盘 | githubyolov8n.onnxYOLOv8-COCOyolov8n.yaml12.21MB百度网盘 | githubyolov8s.onnxYOLOv8 with SAHI-COCOyolov8s_sahi.yaml42.75MB百度网盘 | githubyolov8x6-oiv7.onnxYOLOv8-Open Image V7yolov8x6_oiv7.yaml374.51MB百度网盘 | githubyolov8x-oiv7.onnxYOLOv8-Open Image V7yolov8x_oiv7.yaml262.24MB百度网盘 | githubyolov8l-oiv7.onnxYOLOv8-Open Image V7yolov8l_oiv7.yaml168.28MB百度网盘 | githubyolov8m-oiv7.onnxYOLOv8-Open Image V7yolov8m_oiv7.yaml100.05MB百度网盘 | githubyolov8s-oiv7.onnxYOLOv8-Open Image V7yolov8s_oiv7.yaml43.47MB百度网盘 | githubyolov8n-oiv7.onnxYOLOv8-Open Image V7yolov8n_oiv7.yaml13.47MB百度网盘 | githubyolov9c.onnxYOLOv9-COCOyolov9c.yaml195.34MB百度网盘 | githubyolov9e.onnxYOLOv9-COCOyolov9e.yaml265.43MB百度网盘 | githubgelan-c.onnxYOLOv9-COCOgelan-c.yaml97.43MB百度网盘 | githubgelan-e.onnxYOLOv9-COCOgelan-e.yaml221.94MB百度网盘 | githubyolov10n.onnxYOLOv10-COCOyolov10n.yaml8.98MB百度网盘 | githubyolov10s.onnxYOLOv10-COCOyolov10s.yaml27.86MB百度网盘 | githubyolov10m.onnxYOLOv10-COCOyolov10m.yaml58.81MB百度网盘 | githubyolov10b.onnxYOLOv10-COCOyolov10b.yaml72.95MB百度网盘 | githubyolov10l.onnxYOLOv10-COCOyolov10l.yaml93.20MB百度网盘 | githubyolov10x.onnxYOLOv10-COCOyolov10x.yaml112.68MB百度网盘 | githubyolo11s.onnxYOLO11-COCOyolo11s.yaml36.27MB百度网盘 | github

  • 旋转目标检测(OBB)
    名称描述配置大小链接yolov5n_obb_drone_vehicle.onnxYOLOv5-OBB-DroneVehicleyolov5n_obb_drone_vehicle.yaml8.39MB百度网盘 | githubyolov5s_obb_csl_dotav10.onnxYOLOv5-OBB-DOTA-v1.0yolov5s_obb_csl_dotav10.yaml29.77MB百度网盘 | githubyolov5m_obb_csl_dotav15.onnxYOLOv5-OBB-DOTA-v1.5yolov5m_obb_csl_dotav15.yaml83.59MB百度网盘 | githubyolov5m_obb_csl_dotav20.onnxYOLOv5-OBB-DOTA-v2.0yolov5m_obb_csl_dotav20.yaml83.62MB百度网盘 | githubyolov8s-obb.onnxYOLOv8-OBB-DOTA-v1.0yolov8s_obb.yaml43.84MB百度网盘 | githubyolo11s-obb.onnxYOLO11s-Obb-DOTA-v1.0yolo11s_obb.yaml37.36MB百度网盘 | github

    6、光学字符识别

    名称描述配置大小链接doclayout_yolo_docstructbench_imgsz1024.onnx文档版面分析模型doclayout_yolo.yaml72.22MB百度网盘 | githubch_PP-OCRv4_det_infer.onnx超轻量模型,支持中英文、多语种文本检测模型ch_ppocr_v4.yaml4.53MB百度网盘 | githubch_ppocr_mobile_v2.0_cls_infer.onnx原始分类器模型,对检测到的文本行文字角度分类ch_ppocr_v4.yaml569KB百度网盘 | githubch_PP-OCRv4_rec_infer.onnxUltra-lightweight model supporting Chinese, English, and digits recognition modelch_ppocr_v4.yaml10.33MB百度网盘 | githubch_PP-OCRv4_det_infer.onnx超轻量模型,支持中英文、多语种文本检测模型japan_ppocr.yaml4.53MB百度网盘 | githubch_ppocr_mobile_v2.0_cls_infer.onnx原始分类器模型,对检测到的文本行文字角度分类japan_ppocr.yaml569KB百度网盘 | githubjapan_PP-OCRv3_rec_infer.onnx超轻量日文识别模型japan_ppocr.yaml9.62MB百度网盘 | github

    7、分割一切模型

  • 通用场景
    名称描述配置大小链接sam2_hiera_tiny.encoder.onnxSAM2sam2_hiera_tiny.yaml128.04MB百度网盘 | githubsam2_hiera_tiny.decoder.onnxSAM2sam2_hiera_tiny.yaml19.68MB百度网盘 | githubsam2_hiera_small.encoder.onnxSAM2sam2_hiera_small.yaml155.17MB百度网盘 | githubsam2_hiera_small.decoder.onnxSAM2sam2_hiera_small.yaml19.68MB百度网盘 | githubsam2_hiera_base_plus.encoder.onnxSAM2sam2_hiera_base.yaml324.04MB百度网盘 | githubsam2_hiera_base_plus.decoder.onnxSAM2sam2_hiera_base.yaml19.68MB百度网盘 | githubsam2_hiera_large.encoder.onnxSAM2sam2_hiera_large.yaml848.16MB百度网盘 | githubsam2_hiera_large.decoder.onnxSAM2sam2_hiera_large.yaml19.68MB百度网盘 | githubedge_sam_encoder.onnxEdgeSAMedge_sam.yaml21.02MB百度网盘 | githubedge_sam_decoder.onnxEdgeSAMedge_sam.yaml17.78MB百度网盘 | githubsam_vit_b_01ec64.encoder.onnxSAM ViT-base encodersegment_anything_vit_b.yaml342.58MB百度网盘 | githubsam_vit_b_01ec64.decoder.onnxSAM ViT-base decodersegment_anything_vit_b.yaml15.74MB百度网盘 | githubsam_vit_b_01ec64.encoder.quant.onnxSAM ViT-base encoder(量化版本)segment_anything_vit_b_quant.yaml103.78MB百度网盘 | githubsam_vit_b_01ec64.decoder.quant.onnxSAM ViT-base decoder(量化版本)segment_anything_vit_b_quant.yaml8.34MB百度网盘 | githubsam_vit_l_0b3195.encoder.onnxSAM ViT-large encodersegment_anything_vit_l.yaml1.15GB百度网盘 | githubsam_vit_l_0b3195.decoder.onnxSAM ViT-large decodersegment_anything_vit_l.yaml15.74MB百度网盘 | githubsam_vit_l_0b3195.encoder.quant.onnxSAM ViT-large encoder(量化版本)segment_anything_vit_l_quant.yaml317.18MB百度网盘 | githubsam_vit_l_0b3195.decoder.quant.onnxSAM ViT-large decoder(量化版本)segment_anything_vit_l_quant.yaml8.34MB百度网盘 | githubmobile_sam.encoder.onnxMobileSAM encodermobile_sam_vit_h.yaml26.85MB百度网盘 | githubsam_vit_h_4b8939.decoder.quant.onnxMobileSAM decodermobile_sam_vit_h.yaml8.34MB百度网盘 | githubsam_vit_h_4b8939.encoder.quant.onnxSAM ViT-huge encoder(量化版本)segment_anything_vit_h_quant.yaml626.40MB百度网盘 | githubsam_vit_h_4b8939.decoder.quant.onnxSAM ViT-huge decoder(量化版本)segment_anything_vit_h_quant.yaml8.34MB百度网盘 | githubefficientvit_sam_l0_vit_h.encoder.onnxEfficientViT-SAM ViT-huge encoderefficientvit_sam_l0_vit_h.yaml117.25MB百度网盘 | githubefficientvit_sam_l0_vit_h.decoder.onnxEfficientViT-SAM ViT-huge decoderefficientvit_sam_l0_vit_h.yaml15.63MB百度网盘 | githubefficientvit_sam_l1_vit_h.encoder.onnxEfficientViT-SAM ViT-huge encoderefficientvit_sam_l1_vit_h.yaml166.31MB百度网盘 | githubefficientvit_sam_l1_vit_h.decoder.onnxEfficientViT-SAM ViT-huge decoderefficientvit_sam_l1_vit_h.yaml15.63MB百度网盘 | githubsam_hq_vit_b_encoder.onnxHQ-SAM ViT-base encodersam_hq_vit_b.yaml342.37MB百度网盘 | githubsam_hq_vit_b_decoder.onnxHQ-SAM ViT-base decodersam_hq_vit_b.yaml19.74MB百度网盘 | githubsam_hq_vit_l_encoder.onnxHQ-SAM ViT-large encodersam_hq_vit_l.yaml1.15GB百度网盘 | githubsam_hq_vit_l_decoder.onnxHQ-SAM ViT-large decodersam_hq_vit_l.yaml20.74MB百度网盘 | githubsam_hq_vit_l_encoder_quant.onnxHQ-SAM ViT-large encoder(量化版本)sam_hq_vit_l_quant.yaml307.96MB百度网盘 | githubsam_hq_vit_l_decoderHQ-SAM ViT-large decodersam_hq_vit_l_quant.yaml20.74MB百度网盘 | githubsam_hq_vit_h_encoder_quant.onnxHQ-SAM ViT-huge encoder(量化版本)sam_hq_vit_h_quant.yaml625.55MB百度网盘 | githubsam_hq_vit_h_decoderHQ-SAM ViT-huge decodersam_hq_vit_h_quant.yaml21.74MB百度网盘 | github

  • 医学场景
    名称描述配置大小链接sam-med2d_b.encoder.onnxSAM-Med2D ViT-base encodersam_med2d_vit_b.yaml1019.49MB百度网盘 | githubsam-med2d_b.decoder.onnxSAM-Med2D ViT-base decodersam_med2d_vit_b.yaml15.60MB百度网盘 | githubmedsam_vit_b.encoder.onnxMedSAM ViT-base encodermedsam_vit_b.yaml342.58MB百度网盘 | githubmedsam_vit_b.decoder.onnxMedSAM ViT-base decodermedsam_vit_b.yaml15.74MB百度网盘 | githubsam_model_best_large_ssl_buidnewprocess.encoder.onnxLVMSAM-超声乳腺癌分割模型 ViT-base encoderlvm_sam_ssk_buid_vit_b.yaml342.58MB百度网盘 | githubsam_model_best_large_ssl_buidnewprocess.decoder.onnxLVMSAM-超声乳腺癌分割模型 ViT-base decoderlvm_sam_ssk_buid_vit_b.yaml15.74MB百度网盘 | githubsam_model_best_large_ssl_isiconlytrain.encoder.onnxLVMSAM-皮肤镜病灶分割模型 ViT-base encoderlvm_sam_ssk_isic_vit_b.yaml342.58MB百度网盘 | githubsam_model_best_large_ssl_isiconlytrain.decoder.onnxLVMSAM-皮肤镜病灶分割模型 ViT-base decoderlvm_sam_ssk_isic_vit_b.yaml15.74MB百度网盘 | githubsam_model_best_large_ssl_kvasir.encoder.onnxLVMSAM-结直肠息肉分割模型 ViT-base encoderlvm_sam_ssk_kvasir_vit_b.yaml342.58MB百度网盘 | githubsam_model_best_large_ssl_kvasir.decoder.onnxLVMSAM-结直肠息肉分割模型 ViT-base decoderlvm_sam_ssk_kvasir_vit_b.yaml15.74MB百度网盘 | github

    8、图像分割

    名称描述配置大小链接yolov5s-seg.onnxYOLOv5-COCOyolov5s_seg.yaml29.45MB百度网盘 | githubyolov8x-seg.onnxYOLOv8-COCOyolov8x_seg.yaml274.10MB百度网盘 | githubyolov8l-seg.onnxYOLOv8-COCOyolov8l_seg.yaml175.59MB百度网盘 | githubyolov8m-seg.onnxYOLOv8-COCOyolov8m_seg.yaml104.23MB百度网盘 | githubyolov8s-seg.onnxYOLOv8-COCOyolov8s_seg.yaml45.25MB百度网盘 | githubyolov8n-seg.onnxYOLOv8-COCOyolov8n_seg.yaml13.18MB百度网盘 | githubyolo11s-seg.onnxYOLO11-COCOyolo11s_seg.yaml38.77MB百度网盘 | github

    9、图像抠图

    名称描述配置大小链接bria-rmbg-1.4.onnxRMBG v1.4 (BRIA AI)rmbg_v14.yaml167.99MB百度网盘 | github

    10、多任务

    名称描述配置大小链接resnet50.onnxResNet50-ImageNet(检测+分类级联模型)yolov5s_resnet50.yaml97.42MB百度网盘 | githubyolov5s.onnxYOLOv5-COCO(检测+分类级联模型)yolov5s_resnet50.yaml27.98MB百度网盘 | githubmobile_sam.encoder.onnxMobileSAM encoder(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml26.85MB百度网盘 | githubsam_vit_h_4b8939.decoder.quant.onnxMobileSAM decoder(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml8.34MB百度网盘 | githubyolov5s.onnxYOLOv5-COCO(YOLOv5-SAM)yolov5s_mobile_sam_vit_h.yaml27.98MB百度网盘 | githubefficientvit_sam_l0_vit_h.encoder.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml117.25MB百度网盘 | githubefficientvit_sam_l0_vit_h.decoder.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml15.63MB百度网盘 | githubyolov8n.onnxYOLOv8-EfficientViT-SAMyolov8n_efficientvit_sam_l0_vit_h.yaml12.21MB百度网盘 | githubyolov5m.onnxYOLOv5-RAMyolov5m_ram.yaml81.19MB百度网盘 | githubram_swin_large_14m.onnxYOLOv5-RAMyolov5m_ram.yaml865.66MB百度网盘 | githubyolov5_plate_detect.onnxYOLOv5(车牌识别)yolov5_car_plate.yaml3.65MB百度网盘 | githubyolov5_plate_rec_color.onnxYOLOv5(车牌识别)yolov5_car_plate.yaml702KB百度网盘 | githubedge_sam_encoder.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml21.02MB百度网盘 | githubedge_sam_decoder.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml17.78MB百度网盘 | githubvit-b-16.img.fp16.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml3.51MB百度网盘 | githubvit-b-16.txt.fp16.onnxEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml2.15MB百度网盘 | githubvit-b-16.img.fp16.onnx.extra_fileEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml164.40MB百度网盘 | githubvit-b-16.txt.fp16.onnx.extra_fileEdgeSAM-CN-CLIP ViT-B-16edge_sam_with_chinese_clip.yaml194.68MB百度网盘 | githubgroundingdino_swint_ogc_quant.onnxGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml964.04MB百度网盘 | githubsam_hq_vit_l_encoder_quant.onnxGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml307.96MB百度网盘 | githubsam_hq_vit_l_decoderGroundingSAM-SwinB with HQ-SAM-VitL-QInt8groundingdino_swinb_attn_fuse_sam_hq_vit_l_quant.yaml20.74MB百度网盘 | githubsam2_hiera_large.encoder.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml848.16MB百度网盘 | githubsam2_hiera_large.decoder.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml19.68MB百度网盘 | githubgroundingdino_swint_ogc_quant.onnxGroundingSAM2groundingdino_swint_sam2_large.yaml171.28MB百度网盘 | github

    11、Open-Set Grounded Model

    名称描述配置大小链接yolov8x-worldv2.onnxYOLOv8-COCOyolov8x_worldv2.yaml276.38MB百度网盘 | githubyolov8l-worldv2-cc3m.onnxYOLOv8-CC3Myolov8l_worldv2_cc3m.yaml177.39MB百度网盘 | githubyolov8l-worldv2.onnxYOLOv8-COCOyolov8l_worldv2.yaml177.39MB百度网盘 | githubyolov8m-worldv2.onnxYOLOv8-COCOyolov8m_worldv2.yaml107.21MB百度网盘 | githubyolov8s-worldv2.onnxYOLOv8-COCOyolov8s_worldv2.yaml47.97MB百度网盘 | githubgroundingdino_swint_ogc_quant.onnxGroundingDINOgroundingdino_swint_ogc_quant.yaml171.28MB百度网盘 | githubgroundingdino_swinb_cogcoor_quant.onnxGroundingDINOgroundingdino_swinb_cogcoor_quant.yaml258.90MB百度网盘 | githubram_swin_large_14m.onnxRecognize Anythingram_swin_large_14m.yaml865.66MB百度网盘 | githubram_plus_swin_large_14m.onnxRecognize Anything Pluseram_plus_swin_large_14m.yaml1.74GB百度网盘 | github

    12、深度估计

    名称描述配置大小链接depth_anything_vits14.onnxDepthAnythingdepth_anything_vit_s.yaml94.48MB百度网盘 | githubdepth_anything_vitb14.onnxDepthAnythingdepth_anything_vit_b.yaml370.91MB百度网盘 | githubdepth_anything_vitl14.onnxDepthAnythingdepth_anything_vit_l.yaml1.25GB百度网盘 | githubdepth_anything_v2_vits.onnxDepthAnythingV2depth_anything_v2_vit_s.yaml94.77MB百度网盘 | githubdepth_anything_v2_vitb.onnxDepthAnythingV2depth_anything_v2_vit_b.yaml371.20MB百度网盘 | githubdepth_anything_v2_vitl.onnxDepthAnythingV2depth_anything_v2_vit_l.yaml1.25GB百度网盘 | github

    13、交互式视频目标分割

    名称描述配置大小链接sam2_hiera_tiny.ptSAM 2sam2_hiera_tiny_video.yaml148.68MB百度网盘 | githubsam2_hiera_small.ptSAM 2sam2_hiera_small_video.yaml175.77MB百度网盘 | githubsam2_hiera_base_plus.ptSAM 2sam2_hiera_base_video.yaml308.51MB百度网盘 | githubsam2_hiera_large.ptSAM 2sam2_hiera_large_video.yaml856.35MB百度网盘 | github

    X-AnyLabeling教程示例

  • Classification - Image-Level- Shape-Level

  • Detection - HBB Object Detection- OBB Object Detection

  • Segmentation - Instance Segmentation- Binary Semantic Segmentation- Multiclass Semantic Segmentation

  • Description - Tagging- Captioning

  • Estimation - Pose Estimation- Depth Estimation

  • OCR - Text Recognition- Key Information Extraction

  • MOT - Tracking by HBB Object Detection- Tracking by OBB Object Detection- Tracking by Instance Segmentation- Tracking by Pose Estimation

  • iVOS

  • Matting - Image Matting

目标检测,标注示例

深度估计标注示例

关键点姿态估计,标注示例

视频分割,标注示例

分享完成~


本文转载自: https://blog.csdn.net/qq_41204464/article/details/143637737
版权归原作者 一颗小树x 所有, 如有侵权,请联系我们删除。

“标注工具 X-AnyLabeling | AI 推理引擎 | 自动标注 | 支持多种视觉任务”的评论:

还没有评论