#MapReduce#YARN#hdfs#IDEA#JDK1.8
实验三:Mapreduce词频统计
3.1启动hadoop服务,输入命令:
start-all.sh
3.2在export目录下,创建wordcount目录,在里面创建words.txt文件,向words.txt输入下面内容。
[root@bogon~]# mkdir -p /export/wordcount
[root@bogon~]# cd /export/wordcount/
[root@bogon~]# vi words.txt
[root@bogon~]# cat words.txt
3.3编辑结束,****上传文件到HDFS指定目录
创建/wordcount/input目录,执行命令:
hdfs dfs -mkdir -p /wordcount/input
3.4将在本地/export/wordcount/目录下的words.txt文件,上传到HDFS的/wordcount/input目录,输入命令:
hdfs dfs -put /export/wordcount/words.txt /wordcount/input
在Hadoop WebUI界面查看目录是否创建成功
3.5使用IDEA创建Maven项目MRWordCount
在pom.xml文件里添加hadoop和junit依赖,内容为:
<dependencies>
<!--hadoop客户端-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.3.4</version>
</dependency>
<!--单元测试框架-->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.13.2</version>
</dependency>
</dependencies>
3.6****创建日志文件:在resources目录里创建log4j.properties文件
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/wordcount.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
3.7****创建词频统计映射器类
(1)创建net.army.mr包,在弹出的new package对话框中输入net.army.mr
(2)在net.army.mr包下创建WordCountMapper类
package net.army.mr;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.io.Text;
import java.io.IOException;
/**
* 功能:词频统计映射器类
*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 获取行内容
String line = value.toString();
// 按空格拆分成单词数组
String[] words = line.split(" ");
// 遍历单词数组,生成输出键值对
for (String word : words) {
context.write(new Text(word), new IntWritable(1));
}
}
}
3.8创建WordCountReducer类
package net.army.mr;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* 功能:词频统计归并类
*/
public class WordCountReducer extends Reducer<Text, IntWritable, Text, NullWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
// 定义键(单词)出现次数
int count = 0;
// 遍历输入值迭代器
for (IntWritable value : values) {
count = count + value.get(); // 针对此案例,可以写为count++;
}
// 生成新的键,格式为(word,count)
String newKey = "(" + key.toString() + "," + count + ")";
// 输出新的键值对
context.write(new Text(newKey), NullWritable.get());
}
}
3.9创建WordCountDriver类
package net.army.mr;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.net.URI;
/**
* 功能:词频统计驱动器类
*/
public class WordCountDriver {
public static void main(String[] args) throws Exception {
// 创建配置对象
Configuration conf = new Configuration();
// 设置客户端使用数据节点主机名属性
conf.set("dfs.client.use.datanode.hostname", "true");
// 获取作业实例
Job job = Job.getInstance(conf);
// 设置作业启动类
job.setJarByClass(WordCountDriver.class);
// 设置Mapper类
job.setMapperClass(WordCountMapper.class);
// 设置map任务输出键类型
job.setMapOutputKeyClass(Text.class);
// 设置map任务输出值类型
job.setMapOutputValueClass(IntWritable.class);
// 设置Reducer类
job.setReducerClass(WordCountReducer.class);
// 设置reduce任务输出键类型
job.setOutputKeyClass(Text.class);
// 设置reduce任务输出值类型
job.setOutputValueClass(NullWritable.class);
// 定义uri字符串
String uri = "hdfs://bogon:9000";
// 创建输入目录
Path inputPath = new Path(uri + "/wordcount/input");
// 创建输出目录
Path outputPath = new Path(uri + "/wordcount/output");
// 获取文件系统
FileSystem fs = FileSystem.get(new URI(uri), conf);
// 删除输出目录(第二个参数设置是否递归)
fs.delete(outputPath, true);
// 给作业添加输入目录(允许多个)
FileInputFormat.addInputPath(job, inputPath);
// 给作业设置输出目录(只能一个)
FileOutputFormat.setOutputPath(job, outputPath);
// 等待作业完成
job.waitForCompletion(true);
// 输出统计结果
System.out.println("======统计结果======");
FileStatus[] fileStatuses = fs.listStatus(outputPath);
for (int i = 1; i < fileStatuses.length; i++) {
// 输出结果文件路径
System.out.println(fileStatuses[i].getPath());
// 获取文件系统数据字节输入流
FSDataInputStream in = fs.open(fileStatuses[i].getPath());
// 将结果文件显示在控制台
IOUtils.copyBytes(in, System.out, 4096, false);
}
}
}
3****.10运行词频统计驱动器类WordCountDriver,查看结果****
版权归原作者 大数据小学僧(三天一更) 所有, 如有侵权,请联系我们删除。