文章目录
一,Mac上Elasticsearch和Kibana的安装
Elasticsearch是一个基于Apache Lucene的搜索服务器,适用于所有类型的数据,包括文本、数字、地理空间、结构化和非结构化数据,是是ELK的一个组成部分(ELK代表的是:E就是ElasticSearch,L就是Logstach,K就是kibana)。
它提供了分布式可扩展的实时搜索和分析引擎,它以其简单的 REST 风格 API、分布式特性、速度和可扩展性而闻名,是一个非常强大的搜索引擎全文检索。
Elasticsearch 是由Elastic公司创建并开源维护的,该 公司也拥有 Logstash 及 Kibana 开源项目。
三个开源项目共同形成了一个强大的生态圈。简单地说,Logstash 负责数据的采集,处理(丰富数据,数据转型等),Kibana 负责数据展示,分析及管理。Elasticsearch 处于最核心的位置,它可以帮我们对数据进行快速地搜索及分析。
1.1 环境与下载
在安装之前,提前了解本地PC的java版本,因为java版本和的elasticsearch,kibana的对应关系是有严格要求的
我本地Mac使用的是:
java version “1.8.0_121”
elasticsearch-6.8.2 下载地址:https://www.elastic.co/cn/downloads/elasticsearch
kibana-6.8.23 下载地址:https://www.elastic.co/cn/downloads/kibana
1.2 安装与运行
下载完成之后,在Mac上找个目录解压以上两个压缩包
然后进入各自的bin目录下
elasticsearch的启动命令:
./elasticsearch
kibana的启动命令:
./kibana
输出日志运行完毕后,分别访问 http://localhost:9200(返回json格式的数据)和http://localhost:5601(返回一个页面),若两个页面都显示正常,则运行成功
注意:kibana启动花费时间较长,当执行命令后没有立即看到日志输出为正常情况
1.3 问题
1.3.1 elasticsearch安装后其他机器不能访问
在Mac上运行成功后,同一网段的Windows访问不了时,到Mac上安装目录下的config/elasticsearch.yml下,添加或修改一行
network.bind_host: 0.0.0.0
重新启动,验证
1.3.2 kibana安装后其他机器不能访问
同上,到安装目录下的config/kibana.yml下,添加或修改两行
server.port:5602server.host: 0.0.0.0
重新启动,验证
二,Elasticsearch在Kibana的常见命令
首先,在使用命令之前,需要知道以下的命令可以在哪里运行
打开kibana的首页,点击左边栏的【Dev Tools】,右边栏下面的【Console】分为左右两栏,在左边栏输入命令,然后点击三角形绿色按钮,就可以在右边栏呈现结果,如下所示:
2.1 查看集群的健康状态
GET _cat/health
================================ 结果 ================================1673923769 02:49:29 elasticsearch yellow 11770050 - 58.3%
若想知道每个值的含义
GET _cat/health?v
================================ 结果 ================================
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1673923848 02:50:48 elasticsearch yellow 11770050 - 58.3%
常见属性解读:
- epoch:当前时间的时间戳(默认与东八区差八个小时)
- timestamp:当前时间
- cluster:集群名称
- status:集群状态,green代表健康,yellow代表当前为单机,没有副本
- node.total:在线节点个数
- node.data:在线数据节点个数
- …
获取更加详细的内容
GET _all
================================ 结果 ================================#! Deprecation: [types removal] The parameter include_type_name should be explicitly specified in get indices requests to prepare for 7.0. In 7.0 include_type_name will default to 'false', which means responses will omit the type name in mapping definitions.{".kibana_1":{"aliases":{".kibana":{}},
"mappings":{"doc":{"dynamic":"strict",
"properties":{......
2.2 索引
2.2.1 查看所有索引
GET _cat/indices
================================ 结果 ================================
yellow open human_index Mf-9YNYrSdyiLZFgZCP7ow 514022.6kb 22.6kb
green open .kibana_task_manager J9YFrgfOS1W2N3dvqXwxOg 102012.5kb 12.5kb
green open .kibana_1 hgDx6B-6QmC0KjWLWB3wgQ 105126.5kb 26.5kb
若想知道每个值的含义
GET _cat/indices?v
================================ 结果 ================================
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open human_index Mf-9YNYrSdyiLZFgZCP7ow 514022.6kb 22.6kb
green open .kibana_task_manager J9YFrgfOS1W2N3dvqXwxOg 102012.5kb 12.5kb
green open .kibana_1 hgDx6B-6QmC0KjWLWB3wgQ 105126.5kb 26.5kb
常见属性解读:
- health:索引健康状态
- status:索引启动状态
- index:索引名称
- uuid:索引的唯一标识
- pri:索引主分片数
- rep:索引副本分片数
- docs.count:索引中文档数
- docs.deleted:索引中删除状态的文档
2.2.2 新增索引
PUT /human_index1
================================ 结果 ================================#! Deprecation: the default number of shards will change from [5] to [1] in 7.0.0; if you wish to continue using the default of [5] shards, you must manage this on the create index request or with an index template{"acknowledged": true,
"shards_acknowledged": true,
"index":"human_index1"}
2.2.3 查看单个索引
GET /human_index1
================================ 结果 ================================#! Deprecation: [types removal] The parameter include_type_name should be explicitly specified in get indices requests to prepare for 7.0. In 7.0 include_type_name will default to 'false', which means responses will omit the type name in mapping definitions.{"human_index1":{"aliases":{},
"mappings":{},
"settings":{"index":{"creation_date":"1673926295232",
"number_of_shards":"5",
"number_of_replicas":"1",
"uuid":"i9ESnW6ETN2n5C6V5PLZ8Q",
"version":{"created":"6082399"},
"provided_name":"human_index1"}}}}
2.2.4 删除单个索引
DELETE /human_index1
================================ 结果 ================================{"acknowledged":true}
2.3 查看节点列表
GET _cat/nodes
================================ 结果 ================================10.197.29.203 214592.11 mdi * 2FgJQbJ
或
GET _cat/nodes?v
================================ 结果 ================================ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
10.197.29.203 234591.99 mdi * 2FgJQbJ
常见属性解读:
- ip:部署的ip地址
- heap.percent:堆内存占用百分比
- ram.percent:内存占用百分比
- cup:CPU占用百分比
- load_1m:1分钟的系统负载
- node.role:节点的角色
- master:是否为master节点
- name:节点名称
2.4 文档的增删查改
2.4.1 新增文档
put /human_index/user/1
{"name":"hh",
"desc":"my name is hh",
"age":25,
"country":"China GuangDong",
"sex":"female"}================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"1",
"_version":1,
"result":"created",
"_shards":{"total":2,
"successful":1,
"failed":0},
"created": true,
"_seq_no":1,
"_primary_term":2}
在以上的新增方式中,已经指定了该文档的id(1),如果不需要自定义id的话,可以使用以下方式:
POST /human_index/user
{"name":"id_test",
"desc":"test no id"}================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"MnS2woUBq_u6VYKKJjno",
"_version":1,
"result":"created",
"_shards":{"total":2,
"successful":1,
"failed":0},
"_seq_no":10,
"_primary_term":3}
可以看到,默认随机生成的id为MnS2woUBq_u6VYKKJjno
在创建document的时候,如果命令行的索引index(human_index)和类型type(user)不存在,默认会自动创建。
2.4.2 查询文档
查询单条
get /human_index/user/1
================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"1",
"_version":1,
"_seq_no":1,
"_primary_term":2,
"found": true,
"_source":{"name":"hh",
"desc":"my name is hh",
"age":25,
"country":"China GuangDong",
"sex":"female"}}
查询所有
get /human_index/user/_search
================================ 结果 ================================{"took":1,
"timed_out": false,
"_shards":{"total":5,
"successful":5,
"skipped":0,
"failed":0},
"hits":{"total":4,
"max_score":1.0,
"hits":[{"_index":"human_index",
"_type":"user",
"_id":"2",
"_score":1.0,
"_source":{"name":"sb",
"desc":"my name is sb",
"age":25,
"country":"China GuangDong Jieyang",
"sex":"female"}},
{"_index":"human_index",
"_type":"user",
"_id":"4",
"_score":1.0,
"_source":{"doc":{"name":"lmc hh",
"country":"China GuangDong Jieyang",
"sex":"male",
"desc":"my name is leemon",
"age":11}}},
{"_index":"human_index",
"_type":"user",
"_id":"1",
"_score":1.0,
"_source":{"name":"hh",
"desc":"my name is hh",
"age":25,
"country":"China GuangDong",
"sex":"female"}},
{"_index":"human_index",
"_type":"user",
"_id":"3",
"_score":1.0,
"_source":{"age":24,
"country":"China GuangDong Shenzhen",
"sex":"male",
"name":"ln",
"desc":"my name is lee nai"}}]}}
或
get /human_index/user/_search
{"query":{"match_all":{}}}
由于我是把流程走过一遍了,因此存在多条记录
字段解释:
- took:耗费时间(毫秒)
- _shards:分片情况
- hits:获取到的数据情况 - total:数据总条数- max_score:数据里面打分最高的分数
2.4.3 修改文档
修改可以通过POST和PUT来处理,但两者有区别
- PUT的修改是全局的修改,会丢数据
- POST的修改是局部更新,别的数据不变;请求体文档内容要包裹在键doc内,
PUT
使用put时,如果原document已存在,则会直接替换成新的
put /human_index/user/1
{"sex":"female"}================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"1",
"_version":3,
"result":"updated",
"_shards":{"total":2,
"successful":1,
"failed":0},
"_seq_no":2,
"_primary_term":2}
再继续查看:
get /human_index/user/1
================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"1",
"_version":3,
"_seq_no":2,
"_primary_term":2,
"found": true,
"_source":{"sex":"female"}}
可以发现,除了sex字段外,其他都不见了
POST
将该文档重新还原
put /human_index/user/1
{"name":"hh",
"desc":"my name is hh",
"age":25,
"country":"China GuangDong",
"sex":"female"}
然后通过POST进行修改
post /human_index/user/1/_update
{"doc":{"sex":"male"}}================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"1",
"_version":7,
"result":"updated",
"_shards":{"total":2,
"successful":1,
"failed":0},
"_seq_no":6,
"_primary_term":2}
再重新查看
get /human_index/user/1
================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"1",
"_version":7,
"_seq_no":6,
"_primary_term":2,
"found": true,
"_source":{"name":"hh",
"desc":"my name is hh",
"age":25,
"country":"China GuangDong",
"sex":"male"}}
这个时候,除了sex的其他属性都在存在,为局部修改
2.4.4 删除文档
DELETE /human_index/user/1
================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"1",
"_version":8,
"result":"deleted",
"_shards":{"total":2,
"successful":1,
"failed":0},
"_seq_no":7,
"_primary_term":2}
再继续查看
get /human_index/user/1
================================ 结果 ================================{"_index":"human_index",
"_type":"user",
"_id":"1",
"found":false}
已经删除成功
2.5 查询
再进行查询之前,该索引类型user下的所有记录如下所示
{"took":2,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":6,"max_score":1.0,"hits":[{"_index":"human_index","_type":"user","_id":"5","_score":1.0,"_source":{"name":"ln-1","country":"China GuangDong Jieyang","sex":"male","desc":"my name is leemon-1","age":21}},{"_index":"human_index","_type":"user","_id":"2","_score":1.0,"_source":{"name":"sb","desc":"my name is sb","age":25,"country":"China GuangDong Jieyang","sex":"female"}},{"_index":"human_index","_type":"user","_id":"4","_score":1.0,"_source":{"doc":{"name":"lmc hh","country":"China GuangDong Jieyang","sex":"male","desc":"my name is leemon","age":11}}},{"_index":"human_index","_type":"user","_id":"6","_score":1.0,"_source":{"name":"ln sb","country":"China GuangDong Jieyang","sex":"male","desc":"my name is sb leemon","age":27}},{"_index":"human_index","_type":"user","_id":"1","_score":1.0,"_source":{"name":"hh","desc":"my name is hh","age":25,"country":"China GuangDong","sex":"female"}},{"_index":"human_index","_type":"user","_id":"3","_score":1.0,"_source":{"age":24,"country":"China GuangDong Shenzhen","sex":"male","name":"ln","desc":"my name is lee nai"}}]}}
2.5.1 单条/全表查询
详见2.4.2
2.5.2 分词查询
get /human_index/user/_search
{"query":{"match":{"name":"ln"}}}
结果会查出三条记录(省略部分结果)
{"_index":"human_index","_type":"user","_id":"6","_score":0.6099695,"_source":{"name":"ln sb","country":"China GuangDong Jieyang","sex":"male","desc":"my name is sb leemon","age":27}},{"_index":"human_index","_type":"user","_id":"5","_score":0.2876821,"_source":{"name":"ln-1","country":"China GuangDong Jieyang","sex":"male","desc":"my name is leemon-1","age":21}},{"_index":"human_index","_type":"user","_id":"3","_score":0.2876821,"_source":{"age":24,"country":"China GuangDong Shenzhen","sex":"male","name":"ln","desc":"my name is lee nai"}}
可以看到,通过match查询时,当从文档中的name属性值中出现
ln
时,满足条件
2.5.3 子属性分词查询
get /human_index/user/_search
{"query":{"match":{"doc.name":"hh"}}}
结果查出一条记录
{"_index":"human_index","_type":"user","_id":"4","_score":0.2876821,"_source":{"doc":{"name":"lmc hh","country":"China GuangDong Jieyang","sex":"male","desc":"my name is leemon","age":11}}}
2.5.4 短句查询
前面的是对单个词进行查询,短句指的是多个词组合形成的句子
get /human_index/user/_search
{"query":{"match_phrase":{"country":"GuangDong Jieyang"}}}
结果查出3条记录,id分别为:2,5,6
如果将
match_phrase
改成
match
,相当于只要country中出现
GuangDong
或者
Jieyang
,都会被查出来,相当于查询条件会先被分词,然后返回分词后查询的并集
2.5.5 模糊查询
这里的模糊查询跟关系型数据库的模糊查询有较大的差异,关系型的模糊查询与上面的分词,短句查询类似,Elasticsearch的模糊查询是指查询出参数内容和实际内容的编辑距离在2以内的文档
get /human_index/user/_search
{"query":{"fuzzy":{"country":"Jieyank"}}}
或
get /human_index/user/_search
{"query":{"fuzzy":{"country":"Jieyamg"}}}
等等。
由于
Jieyang
跟
Jieyank
和
Jieyamg
的编辑距离都在2以内,因此能够通过模糊查询得到。结果查出的记录id分别为:2,5,6
2.5.6 排序
get /human_index/user/_search
{"query":{"match":{"country":"Jieyang"}},
"sort":[{"_id":{"order":"desc"}}]}
查询出来的文档数量和
2.5.5
一样,只不过根据id进行降序排序
2.5.7 分页查询
get /human_index/user/_search
{"query":{"match_all":{}},
"sort":[{"age":{"order":"asc"}}],
"from":0,
"size":3}
查找
age
最小的三个文档记录,返回结果的记录id按顺序为:5,3,2
2.5.8 指定字段查询
get /human_index/user/_search
{"query":{"match":{"country":"Jieyang"}},
"_source":["name"]}
查询结果如下所示:
{"took":1,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":3,"max_score":0.2876821,"hits":[{"_index":"human_index","_type":"user","_id":"5","_score":0.2876821,"_source":{"name":"ln-1"}},{"_index":"human_index","_type":"user","_id":"2","_score":0.18232156,"_source":{"name":"sb"}},{"_index":"human_index","_type":"user","_id":"6","_score":0.18232156,"_source":{"name":"ln sb"}}]}}
2.5.9 多条件查询
如果需要多个查询条件拼接在一起就需要使用bool
bool
过滤可以用来合并多个过滤条件查询结果的布尔逻辑,它包含以下操作符:
- must:多个查询条件的完全匹配,相当于 AND
- must_not:多个查询条件的相反匹配,相当于 NOT
- should:至少有一个条件符合匹配,相当于 OR
查找country出现Jieyang,name出现sb,age在24-26中的文档
get /human_index/user/_search
{"query":{"bool":{"must":[{"match":{"country":"Jieyang"}},
{"match":{"name":"sb"}}],
"filter":{"range":{"age":{"gte":24,
"lte":26}}}}}}
结果只查出id为2的文档
关于范围查询:
- gte:大于或大于
- gt:大于
- lte:小于或等于
- le:小于
查找country出现Jieyang或name出现sb,并且age在24-26中的文档
get /human_index/user/_search
{"query":{"bool":{"should":[{"match":{"country":"Jieyang"}},
{"match":{"name":"sb"}}],
"filter":{"range":{"age":{"gte":24,
"lte":26}}}}}}
结果查出id为1,2,3的文档
2.5.10 高亮显示
查询返回结果的时候,将查询条件的内容高亮显示
get /human_index/user/_search
{"query":{"bool":{"must":[{"match":{"country":"Jieyang"}},
{"match":{"name":"sb"}}],
"filter":{"range":{"age":{"gte":24,
"lte":26}}}}},
"highlight":{"fields":{"country":{}}}}
返回结果
{"took":3,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":1,"max_score":0.39343074,"hits":[{"_index":"human_index","_type":"user","_id":"2","_score":0.39343074,"_source":{"name":"sb","desc":"my name is sb","age":25,"country":"China GuangDong Jieyang","sex":"female"},"highlight":{"country":["China GuangDong <em>Jieyang</em>"]}}]}}
2.6 聚合分析
2.6.1 简单分组
对
country
的每个词进行分组,统计出现的文档数量(用户
user
数量)
get /human_index/user/_search
{"aggs":{"group_by_tag":{"terms":{"field":"country"}}}}
返回结果
{"error":{"root_cause":[{"type":"illegal_argument_exception","reason":"Fielddata is disabled on text fields by default. Set fielddata=true on [country] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."}],"type":"search_phase_execution_exception","reason":"all shards failed","phase":"query","grouped":true,"failed_shards":[{"shard":0,"index":"human_index","node":"2FgJQbJ5QhWVXfvoaI2kqQ","reason":{"type":"illegal_argument_exception","reason":"Fielddata is disabled on text fields by default. Set fielddata=true on [country] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."}}],"caused_by":{"type":"illegal_argument_exception","reason":"Fielddata is disabled on text fields by default. Set fielddata=true on [country] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead.","caused_by":{"type":"illegal_argument_exception","reason":"Fielddata is disabled on text fields by default. Set fielddata=true on [country] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."}}},"status":400}
这里发现报错了,但是原因不是执行命令的问题,是因为elasticsearch默认
fielddata
的值为false,此时先要对分组的字段进行处理,将
fielddata
值修改为
true
get /human_index/_mapping/user
{"properties":{"country":{"type":"text",
"fielddata":true}}}================================ 结果 ================================{"acknowledged":true}
再重新执行一遍统计命令,得到结果:
{"took":4,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":6,"max_score":1.0,"hits":[{"_index":"human_index","_type":"user","_id":"5","_score":1.0,"_source":{"name":"ln-1","country":"China GuangDong Jieyang","sex":"male","desc":"my name is leemon-1","age":21}},{"_index":"human_index","_type":"user","_id":"2","_score":1.0,"_source":{"name":"sb","desc":"my name is sb","age":25,"country":"China GuangDong Jieyang","sex":"female"}},{"_index":"human_index","_type":"user","_id":"4","_score":1.0,"_source":{"doc":{"name":"lmc hh","country":"China GuangDong Jieyang","sex":"male","desc":"my name is leemon","age":11}}},{"_index":"human_index","_type":"user","_id":"6","_score":1.0,"_source":{"name":"ln sb","country":"China GuangDong Jieyang","sex":"male","desc":"my name is sb leemon","age":27}},{"_index":"human_index","_type":"user","_id":"1","_score":1.0,"_source":{"name":"hh","desc":"my name is hh","age":25,"country":"China GuangDong","sex":"female"}},{"_index":"human_index","_type":"user","_id":"3","_score":1.0,"_source":{"age":24,"country":"China GuangDong Shenzhen","sex":"male","name":"ln","desc":"my name is lee nai"}}]},"aggregations":{"group_by_tag":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":"china","doc_count":5},{"key":"guangdong","doc_count":5},{"key":"jieyang","doc_count":3},{"key":"shenzhen","doc_count":1}]}}}
可以看到
aggregations
中,对
country
每个词出现的文档数量
2.6.2 分组统计
对
sex
进行分组,计算每个分组的平均age,再按照平均
age
降序排序。在查询之前,记得先对
sex
的
fielddata
进行设置
get /human_index/user/_search
{"aggs":{"group_by_tag":{"terms":{"field":"sex",
"order":{"avg_age":"desc"}},
"aggs":{"avg_age":{"avg":{"field":"age"}}}}}}
结果如下所示:
{"took":4,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":6,"max_score":1.0,"hits":[{"_index":"human_index","_type":"user","_id":"5","_score":1.0,"_source":{"name":"ln-1","country":"China GuangDong Jieyang","sex":"male","desc":"my name is leemon-1","age":21}},{"_index":"human_index","_type":"user","_id":"2","_score":1.0,"_source":{"name":"sb","desc":"my name is sb","age":25,"country":"China GuangDong Jieyang","sex":"female"}},{"_index":"human_index","_type":"user","_id":"4","_score":1.0,"_source":{"doc":{"name":"lmc hh","country":"China GuangDong Jieyang","sex":"male","desc":"my name is leemon","age":11}}},{"_index":"human_index","_type":"user","_id":"6","_score":1.0,"_source":{"name":"ln sb","country":"China GuangDong Jieyang","sex":"male","desc":"my name is sb leemon","age":27}},{"_index":"human_index","_type":"user","_id":"1","_score":1.0,"_source":{"name":"hh","desc":"my name is hh","age":25,"country":"China GuangDong","sex":"female"}},{"_index":"human_index","_type":"user","_id":"3","_score":1.0,"_source":{"age":24,"country":"China GuangDong Shenzhen","sex":"male","name":"ln","desc":"my name is lee nai"}}]},"aggregations":{"group_by_tag":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":"female","doc_count":2,"avg_age":{"value":25.0}},{"key":"male","doc_count":3,"avg_age":{"value":24.0}}]}}}
2.6.3 区间分组
划分
age
范围区间,按照年龄区间进行分组,在每个分组内再按照
sex
进行分组,然后计算每个分组的平均年龄,降序排序
get /human_index/user/_search
{"aggs":{"group_age_range":{"range":{"field":"age",
"ranges":[{"from":0,
"to":10},{"from":11,
"to":20},{"from":21,
"to":25},{"from":25,
"to":30}]},
"aggs":{"group_by_sex":{"terms":{"field":"sex",
"order":{"avg_age":"desc"}},
"aggs":{"avg_age":{"avg":{"field":"age"}}}}}}}}
输出结果的aggregations如下所示:
{"group_age_range":{"buckets":[{"key":"0.0-10.0","from":0.0,"to":10.0,"doc_count":0,"group_by_sex":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[]}},{"key":"11.0-20.0","from":11.0,"to":20.0,"doc_count":0,"group_by_sex":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[]}},{"key":"21.0-25.0","from":21.0,"to":25.0,"doc_count":2,"group_by_sex":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":"male","doc_count":2,"avg_age":{"value":22.5}}]}},{"key":"25.0-30.0","from":25.0,"to":30.0,"doc_count":3,"group_by_sex":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":"male","doc_count":1,"avg_age":{"value":27.0}},{"key":"female","doc_count":2,"avg_age":{"value":25.0}}]}}]}}
2.7 Mapping
通过
_mapping
可以设置和查看每个类型每个字段的数据类型等等
2.7.1 查看所有类型type的mapping
get /human_index/_mapping
================================ 结果 ================================#! Deprecation: [types removal] The parameter include_type_name should be explicitly specified in get mapping requests to prepare for 7.0. In 7.0 include_type_name will default to 'false', which means responses will omit the type name in mapping definitions.{"human_index":{"mappings":{"user":{"properties":{"age":{"type":"long"},
"country":{"type":"text",
"fields":{"keyword":{"type":"keyword",
"ignore_above":256}},
"fielddata":true},
"desc":{"type":"text",
"fields":{"keyword":{"type":"keyword",
"ignore_above":256}}},
"doc":{"properties":{"age":{"type":"long"},
"country":{"type":"text",
"fields":{"keyword":{"type":"keyword",
"ignore_above":256}}},
"desc":{"type":"text",
"fields":{"keyword":{"type":"keyword",
"ignore_above":256}}},
"name":{"type":"text",
"fields":{"keyword":{"type":"keyword",
"ignore_above":256}}},
"sex":{"type":"text",
"fields":{"keyword":{"type":"keyword",
"ignore_above":256}}}}},
"name":{"type":"text",
"fields":{"keyword":{"type":"keyword",
"ignore_above":256}}},
"sex":{"type":"text",
"fields":{"keyword":{"type":"keyword",
"ignore_above":256}},
"fielddata":true},
"tags":{"type":"text",
"fielddata":true}}}}}}
2.7.2 查看单个类型type的mapping
get /human_index/_mapping/user
由于当前只有一个索引
human_index
,且索引下只有一个类型
user
,因此结果与
2.7.1
基本一致
2.7.3 修改mapping
参考
2.6.1
的修改fielddata属性
版权归原作者 李奈 - Leemon 所有, 如有侵权,请联系我们删除。