0


pylink消费kafka写入ES

-- coding: utf-8 --

from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.functions import MapFunction, RuntimeContext, KeyedProcessFunction
from abc import ABC, abstractmethod
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.functions import MapFunction, RuntimeContext, KeyedProcessFunction
from pyflink.datastream.state import MapStateDescriptor
from pyflink.datastream.connectors.kafka import FlinkKafkaConsumer
from pyflink.common.typeinfo import Types, TypeInformation
from pyflink.datastream.connectors.elasticsearch import Elasticsearch7SinkBuilder, ElasticsearchEmitter,
FlushBackoffType
from pyflink.datastream.connectors import DeliveryGuarantee
from pyflink.common.serialization import SimpleStringSchema
import json
import re
from datetime import datetime
from elasticsearch import Elasticsearch
from pyflink.datastream.functions import RuntimeContext, FlatMapFunction
from pyflink.common.typeinfo import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.datastream.connectors.kafka import FlinkKafkaConsumer
from pyflink.common.serialization import SimpleStringSchema

创建 StreamExecutionEnvironment 对象

env = StreamExecutionEnvironment.get_execution_environment()
env.set_parallelism(1)
env.add_jars("file:///root/flink-sql-connector-kafka_2.11-1.14.4.jar")

TEST_KAFKA_SERVERS = "127.0.0.1:9092"
TEST_KAFKA_TOPIC = "topic_elink"
TEST_GROUP_ID = "pyflink_group"

def get_kafka_customer_properties(kafka_servers: str, group_id: str):
properties = {
"bootstrap.servers": kafka_servers,
"fetch.max.bytes": "67108864",
"key.deserializer": "org.apache.kafka.common.serialization.StringDeserializer",
"value.deserializer": "org.apache.kafka.common.serialization.StringDeserializer",
"enable.auto.commit": "false", # 关闭kafka 自动提交,此处不能传bool 类型会报错
"group.id": group_id,
}
return properties

properties = get_kafka_customer_properties(TEST_KAFKA_SERVERS, TEST_GROUP_ID)

class LogEvent:
# id表示全局流水
id = None
# source ip
source = None
#进程名字
fileTag= None
#文件名字
fileName = None
#场景码
serviceCode = None
#系统名字
appName= None
#时间戳
timestamp = None
#偏移量
offset = None

def __init__(self, id,source, fileTag,fileName, serviceCode,appName,timestamp,offset,message,index_name):
     self.id=id
     self.source = source
     self.fileTag = fileTag
     self.fileName = fileName
     self.serviceCode = serviceCode
     self.appName = appName
     self.timestamp= timestamp
     self.offset = offset
     self.message = message
     self.index_name = index_name

def to_dict(self):
     return {
         "id": str(self.id),
         "source": str(self.source),
         "fileTag": str(self.fileTag),
         "fileName":str(self.fileName),
         "serviceCode":str(self.serviceCode),
         "appName":str(self.appName),
         "timestamp":str(self.timestamp),
         "offset":str(self.offset),
         "message":self.message,
         "index_name": self.index_name
     }

class MyMapFunction(FlatMapFunction):
def open(self, runtime_context: RuntimeContext):
self.process_id_to_bus_seq = runtime_context.get_map_state(
MapStateDescriptor('process_id_map_bus_seq', Types.STRING(), Types.STRING()))

def close(self):
     pass

def flat_map(self, raw_message):
     id = ''
     source=''
     fileTag=''
     fileName=''
     serviceCode=''
     appName=''
     timestamp=''
     process_id = ''
     offset=''
     message=''
     raw_message = raw_message.replace("\n", "")
     out=json.loads(raw_message)
     message = out['message']
     source = out['source']
     fileTag = out['file_tag']
     serviceCode=''
     appName=out['app_name']
     timestamp=out['@timestamp']
     offset=out['log']['offset']
     fileName=out['log']['file']['path']

     pattern = r".*?接收数据.*?\d{26}"
     matchObj = re.match(pattern, message)
     if matchObj:
         try:
             pat = re.compile(r".*?接收数据.*?(\d{26}).*?")
             bus_seq = pat.search(message).group(1)
             process_id = message.split()[1]
             self.process_id_to_bus_seq.put(process_id, bus_seq)
         except:
             return
     process_id = message.split()[1]
     bus_seq = self.process_id_to_bus_seq.get(process_id)
     if not bus_seq:
         bus_seq = '0'
     id=bus_seq
     # self.r.delete(process_id)
     # log_event = LogEvent(bus_seq.decode('UTF-8'),message)
     # LogEvent['bus_seq']=bus_seq.decode('UTF-8')
     date_str = datetime.now().strftime("%Y-%m-%d")
     index_name = 'flink-log-elink-' + date_str
     try:
         log_event = LogEvent(id,source, fileTag,fileName, serviceCode,appName,timestamp,offset,message,index_name)
     except:
         return
     #print(log_event.to_dict())
     yield log_event.to_dict()

data_stream = env.add_source(
FlinkKafkaConsumer(topics=TEST_KAFKA_TOPIC,
properties=properties,
deserialization_schema=SimpleStringSchema())
.set_commit_offsets_on_checkpoints(True)
.set_start_from_latest()
).name(f"消费{TEST_KAFKA_TOPIC}主题数据")

env.add_jars("file:///root/lib/flink-sql-connector-elasticsearch7-3.0.1-1.16.jar")

es7_sink = Elasticsearch7SinkBuilder()
.set_bulk_flush_max_actions(1)
.set_emitter(ElasticsearchEmitter.dynamic_index('index_name'))
.set_hosts(['127.0.0.1:9200'])
.build()

def get_line_key(line):
message = ''
message = line.replace("\n", "")
line = json.loads(message)['message']
try:
process_id = line.split()[1]
except:
process_id = '9999'
return process_id

data_stream.key_by(get_line_key).flat_map(MyMapFunction(),output_type=Types.MAP(Types.STRING(),Types.STRING())).sink_to(es7_sink)

data_stream.key_by(get_line_key).flat_map(MyMapFunction(),
output_type=Types.MAP(Types.STRING(), Types.STRING())).sink_to(es7_sink)

执行任务

env.execute('Add "bus_seq" to each line')

标签: kafka java 分布式

本文转载自: https://blog.csdn.net/zhaoyangjian724/article/details/131197140
版权归原作者 scan724 所有, 如有侵权,请联系我们删除。

“pylink消费kafka写入ES”的评论:

还没有评论