文章目录
前言
城市生态与人类生活息息相关,快速 、准确 、客 观地了解城市生态状况已成为生态领域的一个研究重点 。基于遥感技术,提出一个完全基 于遥感技术 ,以自然因子为主的遥感生态指数 (RSEI)来对城市的生态状况进行快速监测与评价 。该指数利用主成分分析技术集成了植被指数 、湿度分量、地表温度和建筑指数等 4个评价指标,它们分别代表了绿度、湿度、热度和干度等4大生态要素。
本文基于GEE平台,实现RSEI算法。
运行结果:
第一步:定义研究区,自行更换自己的研究区
代码如下(示例):
// 第一步:定义研究区,自行更换自己的研究区
var roi =/* color: #98ff00 *//* displayProperties: [
{
"type": "rectangle"
}
] */
ee.Geometry.Polygon([[[120.1210075098537,35.975189051414006],[120.1210075098537,35.886229778229115],[120.25764996590839,35.886229778229115],[120.25764996590839,35.975189051414006]]], null, false);
Map.centerObject(roi);
第二步:加载数据集,定义去云函数
代码如下(示例):
// 第二步:加载数据集,定义去云函数
function removeCloud(image){
var qa = image.select('BQA')
var cloudMask = qa.bitwiseAnd(1<<4).eq(0)
var cloudShadowMask = qa.bitwiseAnd(1<<8).eq(0)
var valid = cloudMask.and(cloudShadowMask)return image.updateMask(valid)}// 数据集去云处理
var L8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA').filterBounds(roi).filterDate('2018-01-01','2019-12-31').filterMetadata('CLOUD_COVER','less_than',50).map(function(image){return image.set('year', ee.Image(image).date().get('year'))}).map(removeCloud)// 影像合成
var L8imgList = ee.List([])for(var a =2018; a <2020; a++){
var img = L8.filterMetadata('year','equals', a).median().clip(roi)
var L8img = img.set('year', a)
L8imgList = L8imgList.add(L8img)}
第三步:主函数,计算生态指标
代码如下(示例):
// 第三步:主函数,计算生态指标
var L8imgCol = ee.ImageCollection(L8imgList).map(function(img){return img.clip(roi)})
L8imgCol = L8imgCol.map(function(img){// 湿度函数:Wet
var Wet = img.expression('B*(0.1509)+ G*(0.1973)+ R*(0.3279)+ NIR*(0.3406)+ SWIR1*(-0.7112)+ SWIR2*(-0.4572)',{'B': img.select(['B2']),'G': img.select(['B3']),'R': img.select(['B4']),'NIR': img.select(['B5']),'SWIR1': img.select(['B6']),'SWIR2': img.select(['B7'])})
img = img.addBands(Wet.rename('WET'))// 绿度函数:NDVI
var ndvi = img.normalizedDifference(['B5','B4']);
img = img.addBands(ndvi.rename('NDVI'))// 热度函数:lst 直接采用MODIS产品
var lst = ee.ImageCollection('MODIS/006/MOD11A1').map(function(img){return img.clip(roi)}).filterDate('2014-01-01','2019-12-31')
var year = img.get('year')
lst=lst.filterDate(ee.String(year).cat('-01-01'),ee.String(year).cat('-12-31')).select(['LST_Day_1km','LST_Night_1km']);// reproject主要是为了确保分辨率为1000
var img_mean=lst.mean().reproject('EPSG:4326',null,1000);//print(img_mean.projection().nominalScale())
img_mean = img_mean.expression('((Day + Night) / 2)',{'Day': img_mean.select(['LST_Day_1km']),'Night': img_mean.select(['LST_Night_1km']),})
img = img.addBands(img_mean.rename('LST'))// 干度函数:ndbsi = ( ibi + si ) / 2
var ibi = img.expression('(2* SWIR1 /(SWIR1 + NIR)-(NIR /(NIR + RED)+ GREEN /(GREEN + SWIR1)))/(2* SWIR1 /(SWIR1 + NIR)+(NIR /(NIR + RED)+ GREEN /(GREEN + SWIR1)))',{'SWIR1': img.select('B6'),'NIR': img.select('B5'),'RED': img.select('B4'),'GREEN': img.select('B3')})
var si = img.expression('((SWIR1 + RED)-(NIR + BLUE))/((SWIR1 + RED)+(NIR + BLUE))',{'SWIR1': img.select('B6'),'NIR': img.select('B5'),'RED': img.select('B4'),'BLUE': img.select('B2')})
var ndbsi =(ibi.add(si)).divide(2)return img.addBands(ndbsi.rename('NDBSI'))})
var bandNames =['NDVI',"NDBSI","WET","LST"]
L8imgCol = L8imgCol.select(bandNames)//定义归一化函数:归一化
var img_normalize =function(img){
var minMax = img.reduceRegion({
reducer:ee.Reducer.minMax(),
geometry: roi,
scale:1000,
maxPixels:10e13,})
var year = img.get('year')
var normalize = ee.ImageCollection.fromImages(
img.bandNames().map(function(name){
name = ee.String(name);
var band = img.select(name);return band.unitScale(ee.Number(minMax.get(name.cat('_min'))), ee.Number(minMax.get(name.cat('_max'))));})).toBands().rename(img.bandNames()).set('year', year);return normalize;}
var imgNorcol = L8imgCol.map(img_normalize);
第四步:PCA融合,提取第一主成分
代码如下(示例):
// 第四步:PCA融合,提取第一主成分
var pca =function(img){
var bandNames = img.bandNames();
var region = roi;
var year = img.get('year')// Mean center the data to enable a faster covariance reducer// and an SD stretch of the principal components.
var meanDict = img.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: region,
scale:1000,
maxPixels:10e13});
var means = ee.Image.constant(meanDict.values(bandNames));
var centered = img.subtract(means).set('year', year);// This helper function returns a list of new band names.
var getNewBandNames =function(prefix, bandNames){
var seq = ee.List.sequence(1,4);//var seq = ee.List.sequence(1, bandNames.length());return seq.map(function(n){return ee.String(prefix).cat(ee.Number(n).int());});};// This function accepts mean centered imagery, a scale and// a region in which to perform the analysis. It returns the// Principal Components (PC) in the region as a new image.
var getPrincipalComponents =function(centered, scale, region){
var year = centered.get('year')
var arrays = centered.toArray();// Compute the covariance of the bands within the region.
var covar = arrays.reduceRegion({
reducer: ee.Reducer.centeredCovariance(),
geometry: region,
scale: scale,
bestEffort:true,
maxPixels:10e13});// Get the 'array' covariance result and cast to an array.// This represents the band-to-band covariance within the region.
var covarArray = ee.Array(covar.get('array'));// Perform an eigen analysis and slice apart the values and vectors.
var eigens = covarArray.eigen();// This is a P-length vector of Eigenvalues.
var eigenValues = eigens.slice(1,0,1);// This is a PxP matrix with eigenvectors in rows.
var eigenVectors = eigens.slice(1,1);// Convert the array image to 2D arrays for matrix computations.
var arrayImage = arrays.toArray(1)// Left multiply the image array by the matrix of eigenvectors.
var principalComponents = ee.Image(eigenVectors).matrixMultiply(arrayImage);// Turn the square roots of the Eigenvalues into a P-band image.
var sdImage = ee.Image(eigenValues.sqrt()).arrayProject([0]).arrayFlatten([getNewBandNames('SD',bandNames)]);// Turn the PCs into a P-band image, normalized by SD.return principalComponents
// Throw out an an unneeded dimension, [[]] -> []..arrayProject([0])// Make the one band array image a multi-band image, [] -> image..arrayFlatten([getNewBandNames('PC', bandNames)])// Normalize the PCs by their SDs..divide(sdImage).set('year', year);}// Get the PCs at the specified scale and in the specified region
img =getPrincipalComponents(centered,1000, region);return img;};
var PCA_imgcol = imgNorcol.map(pca)
Map.addLayer(PCA_imgcol.first(),{"bands":["PC1"]},'pc1')
第五步:利用PC1,计算RSEI,并归一化
代码如下(示例):
// 第五步:利用PC1,计算RSEI,并归一化
var RSEI_imgcol = PCA_imgcol.map(function(img){
img = img.addBands(ee.Image(1).rename('constant'))
var rsei = img.expression('constant - pc1',{
constant: img.select('constant'),
pc1: img.select('PC1')})
rsei =img_normalize(rsei)return img.addBands(rsei.rename('rsei'))})print(RSEI_imgcol)
var visParam ={
palette: '040274,040281,0502a3,0502b8,0502ce,0502e6,0602ff,235cb1,307ef3,269db1,30c8e2,32d3ef,3be285,3ff38f,86e26f,3ae237, b5e22e, d6e21f, fff705, ffd611, ffb613, ff8b13, ff6e08, ff500d, ff0000, de0101, c21301, a71001,911003'
};
Map.addLayer(RSEI_imgcol.first().select('rsei'), visParam,'rsei')
完整代码
代码如下(示例):
// 第一步:定义研究区,自行更换自己的研究区
var roi =/* color: #98ff00 *//* displayProperties: [
{
"type": "rectangle"
}
] */
ee.Geometry.Polygon([[[120.1210075098537,35.975189051414006],[120.1210075098537,35.886229778229115],[120.25764996590839,35.886229778229115],[120.25764996590839,35.975189051414006]]], null, false);
Map.centerObject(roi);// 第二步:加载数据集,定义去云函数
function removeCloud(image){
var qa = image.select('BQA')
var cloudMask = qa.bitwiseAnd(1<<4).eq(0)
var cloudShadowMask = qa.bitwiseAnd(1<<8).eq(0)
var valid = cloudMask.and(cloudShadowMask)return image.updateMask(valid)}// 数据集去云处理
var L8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA').filterBounds(roi).filterDate('2018-01-01','2019-12-31').filterMetadata('CLOUD_COVER','less_than',50).map(function(image){return image.set('year', ee.Image(image).date().get('year'))}).map(removeCloud)// 影像合成
var L8imgList = ee.List([])for(var a =2018; a <2020; a++){
var img = L8.filterMetadata('year','equals', a).median().clip(roi)
var L8img = img.set('year', a)
L8imgList = L8imgList.add(L8img)}// 第三步:主函数,计算生态指标
var L8imgCol = ee.ImageCollection(L8imgList).map(function(img){return img.clip(roi)})
L8imgCol = L8imgCol.map(function(img){// 湿度函数:Wet
var Wet = img.expression('B*(0.1509)+ G*(0.1973)+ R*(0.3279)+ NIR*(0.3406)+ SWIR1*(-0.7112)+ SWIR2*(-0.4572)',{'B': img.select(['B2']),'G': img.select(['B3']),'R': img.select(['B4']),'NIR': img.select(['B5']),'SWIR1': img.select(['B6']),'SWIR2': img.select(['B7'])})
img = img.addBands(Wet.rename('WET'))// 绿度函数:NDVI
var ndvi = img.normalizedDifference(['B5','B4']);
img = img.addBands(ndvi.rename('NDVI'))// 热度函数:lst 直接采用MODIS产品
var lst = ee.ImageCollection('MODIS/006/MOD11A1').map(function(img){return img.clip(roi)}).filterDate('2014-01-01','2019-12-31')
var year = img.get('year')
lst=lst.filterDate(ee.String(year).cat('-01-01'),ee.String(year).cat('-12-31')).select(['LST_Day_1km','LST_Night_1km']);// reproject主要是为了确保分辨率为1000
var img_mean=lst.mean().reproject('EPSG:4326',null,1000);//print(img_mean.projection().nominalScale())
img_mean = img_mean.expression('((Day + Night) / 2)',{'Day': img_mean.select(['LST_Day_1km']),'Night': img_mean.select(['LST_Night_1km']),})
img = img.addBands(img_mean.rename('LST'))// 干度函数:ndbsi = ( ibi + si ) / 2
var ibi = img.expression('(2* SWIR1 /(SWIR1 + NIR)-(NIR /(NIR + RED)+ GREEN /(GREEN + SWIR1)))/(2* SWIR1 /(SWIR1 + NIR)+(NIR /(NIR + RED)+ GREEN /(GREEN + SWIR1)))',{'SWIR1': img.select('B6'),'NIR': img.select('B5'),'RED': img.select('B4'),'GREEN': img.select('B3')})
var si = img.expression('((SWIR1 + RED)-(NIR + BLUE))/((SWIR1 + RED)+(NIR + BLUE))',{'SWIR1': img.select('B6'),'NIR': img.select('B5'),'RED': img.select('B4'),'BLUE': img.select('B2')})
var ndbsi =(ibi.add(si)).divide(2)return img.addBands(ndbsi.rename('NDBSI'))})
var bandNames =['NDVI',"NDBSI","WET","LST"]
L8imgCol = L8imgCol.select(bandNames)//定义归一化函数:归一化
var img_normalize =function(img){
var minMax = img.reduceRegion({
reducer:ee.Reducer.minMax(),
geometry: roi,
scale:1000,
maxPixels:10e13,})
var year = img.get('year')
var normalize = ee.ImageCollection.fromImages(
img.bandNames().map(function(name){
name = ee.String(name);
var band = img.select(name);return band.unitScale(ee.Number(minMax.get(name.cat('_min'))), ee.Number(minMax.get(name.cat('_max'))));})).toBands().rename(img.bandNames()).set('year', year);return normalize;}
var imgNorcol = L8imgCol.map(img_normalize);// 第四步:PCA融合,提取第一主成分
var pca =function(img){
var bandNames = img.bandNames();
var region = roi;
var year = img.get('year')// Mean center the data to enable a faster covariance reducer// and an SD stretch of the principal components.
var meanDict = img.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: region,
scale:1000,
maxPixels:10e13});
var means = ee.Image.constant(meanDict.values(bandNames));
var centered = img.subtract(means).set('year', year);// This helper function returns a list of new band names.
var getNewBandNames =function(prefix, bandNames){
var seq = ee.List.sequence(1,4);//var seq = ee.List.sequence(1, bandNames.length());return seq.map(function(n){return ee.String(prefix).cat(ee.Number(n).int());});};// This function accepts mean centered imagery, a scale and// a region in which to perform the analysis. It returns the// Principal Components (PC) in the region as a new image.
var getPrincipalComponents =function(centered, scale, region){
var year = centered.get('year')
var arrays = centered.toArray();// Compute the covariance of the bands within the region.
var covar = arrays.reduceRegion({
reducer: ee.Reducer.centeredCovariance(),
geometry: region,
scale: scale,
bestEffort:true,
maxPixels:10e13});// Get the 'array' covariance result and cast to an array.// This represents the band-to-band covariance within the region.
var covarArray = ee.Array(covar.get('array'));// Perform an eigen analysis and slice apart the values and vectors.
var eigens = covarArray.eigen();// This is a P-length vector of Eigenvalues.
var eigenValues = eigens.slice(1,0,1);// This is a PxP matrix with eigenvectors in rows.
var eigenVectors = eigens.slice(1,1);// Convert the array image to 2D arrays for matrix computations.
var arrayImage = arrays.toArray(1)// Left multiply the image array by the matrix of eigenvectors.
var principalComponents = ee.Image(eigenVectors).matrixMultiply(arrayImage);// Turn the square roots of the Eigenvalues into a P-band image.
var sdImage = ee.Image(eigenValues.sqrt()).arrayProject([0]).arrayFlatten([getNewBandNames('SD',bandNames)]);// Turn the PCs into a P-band image, normalized by SD.return principalComponents
// Throw out an an unneeded dimension, [[]] -> []..arrayProject([0])// Make the one band array image a multi-band image, [] -> image..arrayFlatten([getNewBandNames('PC', bandNames)])// Normalize the PCs by their SDs..divide(sdImage).set('year', year);}// Get the PCs at the specified scale and in the specified region
img =getPrincipalComponents(centered,1000, region);return img;};
var PCA_imgcol = imgNorcol.map(pca)
Map.addLayer(PCA_imgcol.first(),{"bands":["PC1"]},'pc1')// 第五步:利用PC1,计算RSEI,并归一化
var RSEI_imgcol = PCA_imgcol.map(function(img){
img = img.addBands(ee.Image(1).rename('constant'))
var rsei = img.expression('constant - pc1',{
constant: img.select('constant'),
pc1: img.select('PC1')})
rsei =img_normalize(rsei)return img.addBands(rsei.rename('rsei'))})print(RSEI_imgcol)
var visParam ={
palette: '040274,040281,0502a3,0502b8,0502ce,0502e6,0602ff,235cb1,307ef3,269db1,30c8e2,32d3ef,3be285,3ff38f,86e26f,3ae237, b5e22e, d6e21f, fff705, ffd611, ffb613, ff8b13, ff6e08, ff500d, ff0000, de0101, c21301, a71001,911003'
};
Map.addLayer(RSEI_imgcol.first().select('rsei'), visParam,'rsei')
总结
提示:用完代码记得反馈。
版权归原作者 何处惹尘埃? 所有, 如有侵权,请联系我们删除。