0


使用javaApi监控 kafka 集群的环境下消费组的积压信息

需求:提供一个能够监控 kafka 集群的环境下消费组的积压信息。当某个消费组积压的信息超过设定的阈值的时候,程序主动告警提醒。
难点:
集群环境,有多个机器。
每个机器上存在多个主题,多个消费组。
使用javaapi查询
思路:
1。先获取集群环境下某台机子下的所有主题
2。查询该主题下绑定的消费组id
3。查询该主题下具体消费组的信息
具体实现
1。环境准备,导入客户端和kafkaApi

<!-- 解决: java.lang.NoSuchMethodError: org.apache.kafka.common.network.NetworkSend.<init>(Ljava/lang/String;[Ljava/nio/ByteBuffer;)V      --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>0.11.0.1</version><exclusions><exclusion><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka_2.11</artifactId><version>0.11.0.1</version><exclusions><exclusion><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId></exclusion></exclusions></dependency>

2。代码实现

// 获取该集群下的所有主题
        Set<String> topics = this.getAllTopic();for(String topic : topics){// 查询该主题下绑定的消费组id
            Set<String> groupIds = this.getAllGroupsByTopic(topic);// 查询该主题下具体消费组的信息for(String groupId : groupIds){
               this.getGroupInfoFromTopic(url, port, topic, groupId,list);}}
/**
     * 获取kafka集群下的主题
     * 注意:AdminClient是org.apache.kafka.clients.admin包下的
     */
    public Set<String>getAllTopic(){

        Properties props = new Properties();
        props.put("bootstrap.servers", servers);
        org.apache.kafka.clients.admin.AdminClient adminClient = org.apache.kafka.clients.admin.AdminClient.create(props);
        ListTopicsResult listTopicsResult = adminClient.listTopics();
        Set<String> topics = new HashSet<>();
        try {
            topics = listTopicsResult.names().get();}catch(InterruptedException | ExecutionException e){
            e.printStackTrace();}return topics;}/**
     * 获取指定主题下的消费组【group_id】
     * @param topic
     * @return
     */
    public Set<String>getAllGroupsByTopic(String topic){

        String host = url +":"+ port;
        Set<String> groups;
        AdminClient client = AdminClient.createSimplePlaintext(host);
        try {

            Seq<GroupOverview> groupOverviewSeq = client.listAllGroupsFlattened().toSeq();
            List<GroupOverview> allGroups = JavaConversions.seqAsJavaList(groupOverviewSeq);
            groups = new HashSet<>();for(GroupOverview overview: allGroups){

                String groupID = overview.groupId();
                scala.collection.immutable.Map<TopicPartition, Object> map = client.listGroupOffsets(groupID);
                Map<TopicPartition, Object> offsets = JavaConversions.mapAsJavaMap(map);

                Set<TopicPartition> partitions = offsets.keySet();for(TopicPartition tp: partitions){if(tp.topic().equals(topic)){

                        groups.add(groupID);}}}} finally {
            client.close();}return groups;}/**
     *  @param url 集群服务器地址
     * @param port 端口
     * @param topic 主题
     * @param groupId 消费组id
     * @param list 结果集合
     */
    private voidgetGroupInfoFromTopic(String url,
                                       Integer port,
                                       String topic,
                                       String groupId, List<KafkaInfoDto> list){long sum =0L;long sumOffset =0L;long lag =0L;//获取每个partation的元数据信息
        TreeMap<Integer, PartitionMetadata> leader = this.findLeader(url, port, topic);
        List<TopicAndPartition> partitions = new ArrayList<>();for(Map.Entry<Integer, PartitionMetadata> entry : leader.entrySet()){int partition = entry.getKey();
            TopicAndPartition testPartition = new TopicAndPartition(topic, partition);
            partitions.add(testPartition);}

        BlockingChannel channel = new BlockingChannel(url,
                port,
                BlockingChannel.UseDefaultBufferSize(),
                BlockingChannel.UseDefaultBufferSize(),5000);// 获取具体的kafka消费实例信息
        String server = url +":"+ port;
        KafkaConsumer<String, String> kafkaConsumer = this.getKafkaConsumer(server,groupId,topic);// 遍历for(Map.Entry<Integer, PartitionMetadata> entry : leader.entrySet()){

            KafkaInfoDto kafkaInfoDto = new KafkaInfoDto();
            Integer partition = entry.getKey();
            channel.connect();
            OffsetFetchRequest fetchRequest = new OffsetFetchRequest(groupId,
                    partitions,(short)1,0, null);
            channel.send(fetchRequest.underlying());

            OffsetAndMetadata committed = kafkaConsumer.committed(new TopicPartition(topic, partition));long partitionOffset = committed.offset();
            sumOffset += partitionOffset;
            String leadUrl = entry.getValue().leader().host();
            String clientName ="Client_"+ topic +"_"+ partition;
            SimpleConsumer consumer = new SimpleConsumer(leadUrl, port,100000,64*1024, clientName);// 获取该消费者组每个分区最后提交的偏移量long readOffset =getLastOffset(consumer,
                    topic,
                    partition,
                    kafka.api.OffsetRequest.LatestTime(),
                    clientName);
            sum += readOffset;// 注意,得关闭不然会出现异常
            consumer.close();

            log.info("主题是:{},消费者组:{},积压的偏移量为: :{},分区为:{}",topic,groupId,lag,partition);

            lag = sum - sumOffset;
            kafkaInfoDto.setSumOffset(sumOffset);
            kafkaInfoDto.setSum(sum);
            kafkaInfoDto.setLag(lag);
            kafkaInfoDto.setGroupId(groupId);
            kafkaInfoDto.setTopic(topic);
            kafkaInfoDto.setPartition(partition);
            list.add(kafkaInfoDto);}}/**
     * 获取最主要的leader服务下的partation元数据信息
     *
     * @param url       服务器
     * @param port        端口号
     * @param topic       主题名
     * @return
     */
    private TreeMap<Integer, PartitionMetadata>findLeader(String url,int port,
                                                           String topic){
        TreeMap<Integer, PartitionMetadata> map = new TreeMap<>();

        SimpleConsumer consumer = null;
        try {
            consumer = new SimpleConsumer(url, port,100000,64*1024,"leaderLookup"+ new Date().getTime());
            List<String> topics = Collections.singletonList(topic);
            TopicMetadataRequest req = new TopicMetadataRequest(topics);
            TopicMetadataResponse resp = consumer.send(req);

            List<TopicMetadata> metaData = resp.topicsMetadata();for(TopicMetadata item : metaData){for(PartitionMetadata part : item.partitionsMetadata()){
                    map.put(part.partitionId(), part);}}}catch(Exception e){
            System.out.println("Error communicating with url ["+ url +"] to find Leader for ["+ topic +", ] Reason: "+ e);} finally {if(consumer != null)
                consumer.close();}return map;}/**
     * 获取该消费者组每个分区最后提交的偏移量
     *
     * @param consumer   消费者组对象
     * @param topic      主题
     * @param partition  分区
     * @param whichTime  最晚时间
     * @param clientName 客户端名称
     * @return 偏移量
     */
    private staticlonggetLastOffset(SimpleConsumer consumer, String topic,int partition,long whichTime, String clientName){
        TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
        Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<>();
        requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime,1));
        kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
        OffsetResponse response = consumer.getOffsetsBefore(request);if(response.hasError()){
            log.error("Error fetching data Offset Data the url. Reason: "+ response.errorCode(topic, partition));return0;}long[] offsets = response.offsets(topic, partition);return offsets[0];}/**
     * 获取Kafka消费者实例
     *
     * group  消费者组
     * topic  主题名
     * servers 服务器列表
     * @return KafkaConsumer<String, String>
     */
    private KafkaConsumer<String, String>getKafkaConsumer(String servers,
                                                           String group,
                                                           String topic){
        Properties props = new Properties();
        props.put("bootstrap.servers", servers);
        props.put("group.id", group);
        props.put("enable.auto.commit","true");
        props.put("auto.commit.interval.ms","1000");
        props.put("max.poll.records",100);
        props.put("session.timeout.ms","30000");
        props.put("auto.offset.reset","earliest");
        props.put("key.deserializer", StringDeserializer.class.getName());
        props.put("value.deserializer", StringDeserializer.class.getName());
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
        consumer.subscribe(Collections.singletonList(topic));return consumer;}

3。重要参数说明

// 服务的地址【ip+port 可以在配置文件设置多组,达到集群效果】
    @Value("${spring.kafka.bootstrap-servers}")
    private String servers;// 服务地址 【可以在配置文件设置多组,达到集群效果】
    @Value("${spring.kafka.url}")
    private String url;// 端口
    @Value("${spring.kafka.port}")
    private Integer port;

4。application-dev,yml配置

#kafka配置
  kafka:#bootstrap-servers: xxx
    bootstrap-servers: xxx
    # 自定义属性
    url: xxx
    port: xxx

5。需要注意的点

环境配置那里尽量保持两个依赖的版本一致

如果出现jar冲突导致启动失败,可以考虑在pom文件排除相关jar包

如果出现  <!--  java.lang.NoSuchMethodError: org.apache.kafka.common.network.NetworkSend.<init>(Ljava/lang/String;[Ljava/nio/ByteBuffer;)V      -->
     
异常,是没有导入正确的客户端。
标签: kafka java 分布式

本文转载自: https://blog.csdn.net/qq_40790367/article/details/128957362
版权归原作者 蜗牛不慢O 所有, 如有侵权,请联系我们删除。

“使用javaApi监控 kafka 集群的环境下消费组的积压信息”的评论:

还没有评论