0


JAVA实时获取kafka各个主题下分区消息的消费情况

目标

通过指定主题消费者组调用方法,实时查看主题下分区消息的消费情况(消息总数量、消费消息数量、未消费的消息数量)。


工具类

package com.utils.kafka;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.TopicPartition;

public class KafkaConsumeLagMonitorUtils {
    //主题
    public static final String TOPIC_NAME = "topicName";
    //消费者组
    public static final String GROUP_ID_CONFIG = "groupId";
    //如果是集群,则用逗号分隔。
    public static final String KAFKA_BROKER_LIST = "127.0.0.1:6667";

    public static Properties getConsumeProperties(String groupId, String bootstrapServer) {
        Properties props = new Properties();
        props.put("group.id", groupId);
        props.put("bootstrap.servers", bootstrapServer);
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        return props;
    }

    public List<Map<String, Object>> topicAndPartitionDetails(
            String bootstrapServer,
            String groupId,
            String topic
    ) {
        List<Map<String, Object>> result = new ArrayList<>();
        Map<Integer, Long> endOffsetMap = new HashMap<>();
        Map<Integer, Long> commitOffsetMap = new HashMap<>();
        Properties consumeProps = getConsumeProperties(groupId, bootstrapServer);
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(consumeProps);

        try {
            List<TopicPartition> topicPartitions = new ArrayList<>();
            List<PartitionInfo> partitionsFor = consumer.partitionsFor(topic);
            for (PartitionInfo partitionInfo : partitionsFor) {
                TopicPartition topicPartition = new TopicPartition(partitionInfo.topic(), partitionInfo.partition());
                topicPartitions.add(topicPartition);
            }

            Map<TopicPartition, Long> endOffsets = consumer.endOffsets(topicPartitions);
            for (TopicPartition partitionInfo : endOffsets.keySet()) {
                endOffsetMap.put(partitionInfo.partition(), endOffsets.get(partitionInfo));
            }
            for (Integer partitionId : endOffsetMap.keySet()) {
                System.out.println(String.format("at %s, topic:%s, partition:%s, logSize:%s", System.currentTimeMillis(), topic, partitionId, endOffsetMap.get(partitionId)));
            }

            //查询消费偏移量
            for (TopicPartition topicAndPartition : topicPartitions) {
                OffsetAndMetadata committed = consumer.committed(topicAndPartition);
                commitOffsetMap.put(topicAndPartition.partition(), committed.offset());
            }

            //累加lag
            long lagSum = 0l;
            if (endOffsetMap.size() == commitOffsetMap.size()) {
                for (Integer partition : endOffsetMap.keySet()) {
                    long endOffset = endOffsetMap.get(partition);
                    long commitOffset = commitOffsetMap.get(partition);
                    long diffOffset = endOffset - commitOffset;
                    lagSum += diffOffset;
                    HashMap<String, Object> partitionMap = new HashMap<>();
                    //主题
                    partitionMap.put("topic",topic);
                    //消费者组
                    partitionMap.put("groupId",groupId);
                    //分区
                    partitionMap.put("partition",partition);
                    //最后的偏移量
                    partitionMap.put("endOffset",endOffset);
                    //提交的偏移量
                    partitionMap.put("commitOffset",commitOffset);
                    //积压的消息
                    partitionMap.put("diffOffset",diffOffset);
                    result.add(partitionMap);
                }
            } else {
                System.out.println(topic+"主题的分区丢失。");
            }
        } finally {
            if (consumer != null) {
                consumer.close();
            }
        }
        return result;
    }

    public static void main(String[] args) {
        List<Map<String, Object>> list = new KafkaConsumeLagMonitorUtils().topicAndPartitionDetails(
                KAFKA_BROKER_LIST,
                GROUP_ID_CONFIG,
                TOPIC_NAME
        );
        for (Map<String, Object> map : list) {
            map.forEach((k, v) -> {
                System.out.println(k + "=" + v);
            });
            System.out.println("========================");
        }
    }
}

批量监控

package com.utils.kafka;

import java.util.*;

public class KafkaConsumeLagMonitor {
    //kafkaIP和端口
    public static final String KAFKA_BROKER_LIST ="127.0.0.1:6667";
    static List<Map<String, Object>> topicList = new ArrayList<>();

    //这里我监控了两个主题
    static {
        //大气
        Map<String, Object> airMap = new HashMap<>();
        airMap.put("topic", "air");
        airMap.put("groupId", "air_minute_group");
        topicList.add(airMap);

        //水
        Map<String, Object> waterMap = new HashMap<>();
        waterMap.put("topic", "water");
        waterMap.put("groupId", "water_minute_group");
        topicList.add(waterMap);

    }

    /**
     * 只要有一个分区的消息积压数量>lagLimit,则中断方法,直接预警。
     * @param lagLimit 消息积压预警数量
     * @return
     */
    public static String isLazy(long lagLimit) {
        for (Map<String, Object> map : topicList) {
            List<Map<String, Object>> list = new KafkaConsumeLagMonitorUtils().topicAndPartitionDetails(
                    KAFKA_BROKER_LIST,
                    map.get("groupId").toString(),
                    map.get("topic").toString()
            );
            for (Map<String, Object> partitionItem : list) {
                Set<String> keySet = partitionItem.keySet();
                for (String k : keySet) {
                    Object v=partitionItem.get(k);
                    System.out.println(k + "=" + v);
                    if ("diffOffset".equals(k) && Long.parseLong(v.toString()) > lagLimit) {
                        String warnMsg = map.get("topic").toString() + "主题消息积压,分区" + partitionItem.get("partition") + "积压消息" + v + "条。";
                        return warnMsg;
                    }
                }
                System.out.println("========================");
            }
        }
        return null;

    }

    public static void main(String[] args) {
        String lazy = isLazy(1000);
        System.out.println(lazy);
    }
}

本文转载自: https://blog.csdn.net/qq_39706570/article/details/128844060
版权归原作者 我的身前一尺是我的世界 所有, 如有侵权,请联系我们删除。

“JAVA实时获取kafka各个主题下分区消息的消费情况”的评论:

还没有评论