开发环境
Hadoop+Hive+Spark+HBase
启动Hadoop:start-all.sh
启动zookeeper:zkServer.sh start
启动Hive:
nohup hiveserver2 1>/dev/null 2>&1 &
beeline -u jdbc:hive2://192.168.152.192:10000
启动Hbase:
start-hbase.sh
hbase shell
启动Spark:
spark-shell
数据描述
meituan_waimai_meishi.csv 是美团外卖平台的部分外卖 SPU(Standard Product Unit , 标准产品单元)数据,包含了外卖平台某地区一时间的外卖信息。具体字段说明如下:
功能需求
数据准备
请在 HDFS 中创建目录/app/data/exam,并将 meituan_waimai_meishi.csv 文件传到该
目录。并通过 HDFS 命令查询出文档有多少行数据。
创建文件
hdfs dfs -mkdir -p /app/data/exam上传目录
hdfs dfs -put ./meituan_waimai_meishi.csv /app/data/exam查看文件行数
hdfs dfs -cat /app/data/exam/meituan_waimai_meishi.csv | wc -l
数据分析
使用 Spark,加载 HDFS 文件系统 meituan_waimai_meishi.csv 文件,并分别使用 RDD
和 Spark SQL 完成以下分析(不用考虑数据去重)。
RDD操作
val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName("exam")
.getOrCreate()
val sc: SparkContext = spark.sparkContext
val lines: RDD[String] = sc.textFile("hdfs://192.168.152.192:9000/app/data/exam/meituan_waimai_meishi.csv")
val lines1: RDD[Array[String]] = lines.filter(x => x.startsWith("spu_id") == false)
.map(x => x.split(","))
**①统计每个店铺分别有多少商品(SPU)。 **
lines1.map(x => (x(2), 1)).reduceByKey(_ + _).collect().foreach(println)
②统计每个店铺的总销售额。
lines1.map(x => (x(2), Try(x(5).toDouble).toOption.getOrElse(0.0) *
Try(x(7).toInt).toOption.getOrElse(0))).reduceByKey(_ + _)
.collect().foreach(println)
**③统计每个店铺销售额最高的前三个商品,输出内容包括店铺名,商品名和销售额,其 **
中销售额为 0 的商品不进行统计计算,例如:如果某个店铺销售为 0,则不进行统计。
//方法一
lines1.map(x => (x(2), x(4), Try(x(5).toDouble).toOption.getOrElse(0.0) *
Try(x(7).toInt).toOption.getOrElse(0)))
.filter(x => x._3 > 0).groupBy(x => x._1)
.mapValues(value => value.toList.sortBy(x => -x._3).take(3)) //负号(-)降序
.flatMapValues(x => x)
.collect().foreach(println)
//方法二
lines1.map(x => (x(2), x(4), Try(x(5).toDouble).toOption.getOrElse(0.0) *
Try(x(7).toInt).toOption.getOrElse(0)))
.filter(x => x._3 > 0).groupBy(x => x._1)
.flatMap(x => x._2.toList.sortBy(y => 0 - y._3).take(3))
.foreach(println)
//方法三
lines1.map(x => (x(2), x(4), Try(x(5).toDouble).toOption.getOrElse(0.0) *
Try(x(7).toInt).toOption.getOrElse(0)))
.filter(x => x._3 > 0).groupBy(x => x._1)
.map(x => {
var shop_name: String = x._1;
var topThree: List[(String, String, Double)] = x._2.toList.sortBy(item => 0 - item._3).take(3);
var shopNameAndSumMoney: List[String] = topThree.map(it => it._2 + " " + it._3);
(shop_name, shopNameAndSumMoney)
})
.foreach(println)
Spark SQL操作
val spark: SparkSession = SparkSession.builder()
.master("local[*]")
.appName("exam")
.getOrCreate()
val sc: SparkContext = spark.sparkContext
val spuDF: DataFrame = spark.read.format("csv").option("header", true).load("hdfs://192.168.152.192:9000/app/data/exam/meituan_waimai_meishi.csv")
spuDF.createOrReplaceTempView("sputb")
①统计每个店铺分别有多少商品(SPU)。
spark.sql("select * from sputb").show()
②统计每个店铺的总销售额。
spark.sql("select shop_name,count(shop_name) as num from sputb group by shop_name").show()
③统计每个店铺销售额最高的前三个商品,输出内容包括店铺名,商品名和销售额,其 中销售额为 0 的商品不进行统计计算,例如:如果某个店铺销售为 0,则不进行统计。
spark.sql("select shop_name, sum(spu_price * month_sales) as sumMoney from sputb group by shop_name").show()
创建Hbase数据表
在 HBase 中创建命名空间(namespace)exam,在该命名空间下创建 spu 表,该表下有
1 个列族 result。
create 'exam:spu','result'
创建外部表
请 在 Hive 中 创 建 数 据 库 spu_db
create database spu_db;
在 该 数 据 库 中 创 建 外 部 表 ex_spu 指 向 /app/data/exam 下的测试数据 ;
create external table if not exists ex_spu (
spu_id string,
shop_id string,
shop_name string,
category_name string,
spu_name string,
spu_price double,
spu_originprice double,
month_sales int,
praise_num int,
spu_unit string,
spu_desc string,
spu_image string
)
row format delimited fields terminated by ","
stored as textfile location "/app/data/exam"
tblproperties ("skip.header.line.count"="1");
创建外部表 ex_spu_hbase 映射至 HBase 中的 exam:spu 表的 result 列族
create external table if not exists ex_spu_hbase
(
key string,
sales double,
praise int
)
stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with
serdeproperties ("hbase.columns.mapping"=":key,result:sales,result:praise")
tblproperties ("hbase.table.name"="exam:spu");
统计查询
**① 统计每个店铺的总销售额 ****sales, ****店铺的商品总点赞数 praise,并将 ****shop_id ****和 **
**shop_name ****的组合作为 RowKey,并将结果映射到 HBase。 **
insert into ex_spu_hbase
select concat(tb.shop_id,tb.shop_name) as key, tb.sales,tb.praise from
(select shop_id,shop_name,sum(spu_price*month_sales) as sales, sum(praise_num) as praise
from ex_spu group by shop_id,shop_name) tb;
**② 完成统计后,分别在 ****hive ****和 ****HBase **中查询结果数据。
hive > select * from ex_spu_hbase;
hbase(main):007:0> scan 'exam:spu'
版权归原作者 快乐画饼 所有, 如有侵权,请联系我们删除。