🏡 博客首页:派 大 星
⛳️ 欢迎关注 🐳 点赞 🎒 收藏 ✏️ 留言
🎢 本文由派大星原创编撰
🚧 系列专栏:《ES小结》
🎈 本系列记录ElasticSearch技术学习历程以及问题解决
ElasticSearch高效数据统计
聚合查询
① 什么是聚合查询
聚合是
ES
除搜索功能外提供的针对
ES
数据做统计分析的功能,聚合有助于根据搜索查询提供聚合数据,聚合查询是数据库中重要额功能特性,
ES
作为搜索引擎兼数据库,同样提供了强大的聚合分析功能力,它是基于查询条件来对数据进行分桶、计算的方法,这种很类似与
SQL
中的
group by
再加上一些函数方法的操作。
在了解聚合查询之前需要注意的一点是:**
text
类型是不支持聚合的**,主要是因为
text
类型本身是分词的,通俗的说,如果一句话分成了多个词然后进行
group by
操作,那么问题就出现了,到底对哪一个词进行
group by
操作呢?无法指定!
② Kibana 命令测试聚合查询
创建测试索引
PUT/fruit
{"mappings":{"properties":{"title":"keyword"},"price":{"type":"double"},"description":{"type":"text"}}}
存放测试数据
PUT/fruit/_bulk
{"index":{}}{"title":"面包","price":19.6,"description":"小面包很便宜"}{"index":{}}{"title":"旺旺牛奶","price":29.6,"description":"旺旺牛奶很好喝"}{"index":{}}{"title":"日本豆","price":9.0,"description":"日本豆很便宜"}{"index":{}}{"title":"大辣条","price":10.6,"description":"大辣条超级好吃"}{"index":{}}{"title":"海苔","price":49.6,"description":"海苔很一般"}{"index":{}}{"title":"小饼干","price":9.6,"description":"小饼干很小"}{"index":{}}{"title":"小葡萄","price":59.6,"description":"小葡萄很好吃"}{"index":{}}{"title":"小饼干","price":19.6,"description":"小饼干很小"}{"index":{}}{"title":"小饼干","price":59.6,"description":"小饼干很小"}{"index":{}}{"title":"小饼干","price":29.6,"description":"小饼干很小"}{"index":{}}{"title":"小饼干","price":39.6,"description":"小饼干很小"}
③ 聚合操作使用
根据某个字段分组
GET/fruit/_search
{"query":{"match_all":{}},"aggs":{"price_group":{"terms":{"field":"price"}}}}
求最大值
GET/fruit/_search
{"query":{"match_all":{}},"aggs":{"max_price":{"max":{"field":"price"}}}}
最小值
GET/fruit/_search
{"query":{"match_all":{}},"size":0,"aggs":{"min_price":{"min":{"field":"price"}}}}
求总数
GET/fruit/_search
{"query":{"match_all":{}},"size":0,"aggs":{"min_price":{"sum":{"field":"price"}}}}
求平均值
GET/fruit/_search
{"query":{"match_all":{}},"size":0,"aggs":{"avg_price":{"avg":{"field":"price"}}}}
④ RestHighLevelClient 测试聚合查询
在使用
Java API
实现上述操作之前,有必要先了解一下实现过程中使用到的某些方法以及工具
常见的聚合查询:
- 统计某个字段的数量
ValueCountBuilder vcb= AggregationBuilders.count(“分组的名称”).field(“字段”);
- 去重统计某个字段的数量(有少量的误差)
CardinalityBuilder cb= AggregationBuilders.cardinality(“分组的名称”).field(“字段”);
- 聚合过滤
FilterAggregationBuilder fab= AggregationBuilders.filter(“分组的名称”).filter(QueryBuilders.queryStringQuery(“字段:过滤值”));
- 按某个字段分组
TermsBuilder tb= AggregationBuilders.terms(“分组的名称”).field(“字段”);
- 求最大值
SumBuilder sumBuilder= AggregationBuilders.max(“分组的名称”).field(“字段”);
- 求最小值
AvgBuilder ab= AggregationBuilders.min(“分组的名称”).field(“字段”);
- 求平均值
MaxBuilder mb= AggregationBuilders.avg(“分组的名称”).field(“字段”);
- 按日期间隔分组
DateHistogramBuilder dhb= AggregationBuilders.dateHistogram(“分组的名称”).field(“字段”);
- 获取聚合里面的结果
TopHitsBuilder thb= AggregationBuilders.topHits(“分组的名称”);
- 嵌套的聚合
NestedBuilder nb= AggregationBuilders.nested(“分组的名称”).path(“字段”);
- 反转嵌套
AggregationBuilders.reverseNested(“分组的名称”).path("字段 ");
使用
Java API
实现上述在
Kibana
中的各项操作
根据某个字段分组
publicclassRestHighLevelClientForAggs{publicstaticvoidmain(String[] args){RestHighLevelClient esClient =Client.getClient();//基于terms 类型聚合 基于字段进行分组聚合SearchRequest request =newSearchRequest("fruit");SearchSourceBuilder sourceBuilder =newSearchSourceBuilder();
sourceBuilder
.query(QueryBuilders.matchAllQuery())//查询条件//用来设置聚合处理.aggregation(AggregationBuilders.terms("price_group").field("price")).size(0);
request.source(sourceBuilder);SearchResponse response =null;try{
response = esClient.search(request,RequestOptions.DEFAULT);//处理聚合的结果Aggregations aggregations = response.getAggregations();ParsedDoubleTerms doubleTerms = aggregations.get("price_group");List<?extendsTerms.Bucket> buckets = doubleTerms.getBuckets();for(Terms.Bucket bucket : buckets){System.out.println(bucket.getKey()+" "+bucket.getDocCount());}}catch(Exception e){
e.printStackTrace();}}}
求最大值
publicclassAggregationForMax{publicstaticvoidmain(String[] args){RestHighLevelClient client =Client.getClient();SearchRequest request =newSearchRequest("fruit");SearchSourceBuilder sourceBuilder =newSearchSourceBuilder();
sourceBuilder
.query(QueryBuilders.matchAllQuery()).aggregation(AggregationBuilders.max("max_price").field("price")).size(0);
request.source(sourceBuilder);try{SearchResponse searchResponse =
client.search(request,RequestOptions.DEFAULT);Aggregations aggregations = searchResponse.getAggregations();ParsedMax maxPrice = aggregations.get("max_price");System.out.println(maxPrice.getValueAsString());}catch(IOException e){
e.printStackTrace();}}}
注意: 在最终获取分组中的数据时,首先判断所求得的结果是否是
Key-Value
的结果,比如上述根据某个字段分组的示例从
Kibana
中就可以看出是
Key-Value
的形式,所以
aggregations.get("分组名称");
返回的结果应该为
ParsedXXXXTerms
类型,如果像求最大值、平均值、最小值等在执行到该
aggregations.get("分组名称");
返回的结果应该为
ParsedXXX
类型
求最小值
publicclassAggregationForMin{publicstaticvoidmain(String[] args){RestHighLevelClient client =Client.getClient();SearchRequest searchRequest =newSearchRequest("fruit");SearchSourceBuilder sourceBuilder =newSearchSourceBuilder();
sourceBuilder
.query(QueryBuilders.matchAllQuery()).aggregation(AggregationBuilders.min("min_price").field("price")).size(0);
searchRequest.source(sourceBuilder);try{SearchResponse searchResponse =
client.search(searchRequest,RequestOptions.DEFAULT);Aggregations aggregations = searchResponse.getAggregations();ParsedMin minPrice = aggregations.get("min_price");System.out.println(minPrice.getValueAsString());}catch(IOException e){
e.printStackTrace();}}}
等等一系列需求的演示和模拟,使用
ES
来完成数据的统计。
⑤ 子聚合
先从需求展开,先按照
title
进行分组,然后再对每一个分组中的成员对价格
price
进行降序排序
先使用命令在
Kibana
中实现该操作,其次再根据实现的命令转换为
Java
代码实现
使用命令操作进行实现
GET/fruit/_search
{"query":{"match_all":{}},"size":0,"aggs":{"title_group":{"terms":{"field":"title"},"aggs":{"sort_price":{"terms":{"field":"price","order":{"_key":"desc"}}}}}}}
将实现的命令转换为
Java
流程
publicclassAggregationForSub{publicstaticvoidmain(String[] args){RestHighLevelClient client =Client.getClient();SearchRequest searchRequest =newSearchRequest("fruit");SearchSourceBuilder sourceBuilder =newSearchSourceBuilder();TermsAggregationBuilder termsAggregationBuilder =AggregationBuilders.terms("title_group").field("title");TermsAggregationBuilder subAggregationBuilder =AggregationBuilders.terms("price_sort").field("price").order(BucketOrder.count(false));//subAggregation 为子聚合
termsAggregationBuilder.subAggregation(subAggregationBuilder);
sourceBuilder
.query(QueryBuilders.matchAllQuery()).aggregation(termsAggregationBuilder).size(0);
searchRequest.source(sourceBuilder);try{SearchResponse searchResponse = client.search(searchRequest,RequestOptions.DEFAULT);Aggregations aggregations = searchResponse.getAggregations();ParsedStringTerms titleGroup = aggregations.get("title_group");for(Terms.Bucket bucket : titleGroup.getBuckets()){System.out.println(bucket.getKey()+"--"+bucket.getDocCount());Aggregations bucketAggregations = bucket.getAggregations();ParsedDoubleTerms priceSort = bucketAggregations.get("price_sort");for(Terms.Bucket priceSortBucket : priceSort.getBuckets()){System.out.println(priceSortBucket.getKey()+"--"+priceSortBucket.getDocCount());}}}catch(IOException e){
e.printStackTrace();}}}
版权归原作者 派 大 星. 所有, 如有侵权,请联系我们删除。