0


KafkaConsumer 消费逻辑

版本:kafka-clients-2.0.1.jar

之前想写个插件修改 kafkaConsumer 消费者的逻辑,根据 header 过滤一些消息。于是需要了解一下 kafkaConsumer 具体是如何拉取消费消息的,确认在消费之前过滤掉消息是否会有影响。
下面是相关的源码,并通过注释的方式进行说明。

先结论:kafkaConsumer 拉取消息的 offset 是存本地的,根据 offset 拉取消息。开启自动提交时,会自动提交 offset 到 broker(在一些场景下会手动检查是否需要提交),防止重启或reblance时 offset 丢失。而本地保存的 offset 是本地拉取到消息时就更新的,所以自动提交的场景下,在消费前过滤掉消息没有影响。

拉取消息

KafkaConsumer#poll

  1. privateConsumerRecords<K,V>poll(finallong timeoutMs,finalboolean includeMetadataInTimeout){// note: 获取轻锁同时检查非多线程环境,并检查 consumer 开启状态 (可以close的)acquireAndEnsureOpen();try{if(timeoutMs <0)thrownewIllegalArgumentException("Timeout must not be negative");// note: subscriptions:SubscriptionState 维护了当前消费者订阅的主题列表的状态信息(组、offset等)// 方法判断是否未订阅或未分配分区if(this.subscriptions.hasNoSubscriptionOrUserAssignment()){thrownewIllegalStateException("Consumer is not subscribed to any topics or assigned any partitions");}// poll for new data until the timeout expireslong elapsedTime =0L;do{// note: 是否触发了唤醒操作 (调用了当前对象的 wakeup 方法) 通过抛异常的方式退出当前方法,(这里是while循环,可能一直在拉取消息,(无新消息时))
  2. client.maybeTriggerWakeup();finallong metadataEnd;if(includeMetadataInTimeout){finallong metadataStart = time.milliseconds();// note: 更新分区分配元数据以及offset, remain是用来算剩余时间的// 内部逻辑:// 1 协调器 ConsumerCoordinator.poll 拉取协调器事件(期间会发送心跳、自动提交)// 2 updateFetchPositions 更新positions,(但本地有positions数据就不更新,更新完pos后,如果还有缺的,就先使用reset策略,最后异步设置pos)if(!updateAssignmentMetadataIfNeeded(remainingTimeAtLeastZero(timeoutMs, elapsedTime))){returnConsumerRecords.empty();}
  3. metadataEnd = time.milliseconds();
  4. elapsedTime += metadataEnd - metadataStart;}else{while(!updateAssignmentMetadataIfNeeded(Long.MAX_VALUE)){
  5. log.warn("Still waiting for metadata");}
  6. metadataEnd = time.milliseconds();}//note: 这里终于开始拉取消息了,下面单独讲一下finalMap<TopicPartition,List<ConsumerRecord<K,V>>> records =pollForFetches(remainingTimeAtLeastZero(timeoutMs, elapsedTime));if(!records.isEmpty()){//note: 翻译:返回之前,发送下一个拉取的请求避免阻塞response// before returning the fetched records, we can send off the next round of fetches// and avoid block waiting for their responses to enable pipelining while the user// is handling the fetched records.//// NOTE: since the consumed position has already been updated, we must not allow// wakeups or any other errors to be triggered prior to returning the fetched records.if(fetcher.sendFetches()>0|| client.hasPendingRequests()){
  7. client.pollNoWakeup();}//note: 这里使用拦截器拦截一下,这里可以对消息进行修改或过滤,但需要注意commit的问题returnthis.interceptors.onConsume(newConsumerRecords<>(records));}finallong fetchEnd = time.milliseconds();
  8. elapsedTime += fetchEnd - metadataEnd;}while(elapsedTime < timeoutMs);returnConsumerRecords.empty();}finally{release();}}

关于 pollForFetches 的逻辑

pollForFetches

  1. privateMap<TopicPartition,List<ConsumerRecord<K,V>>>pollForFetches(finallong timeoutMs){finallong startMs = time.milliseconds();long pollTimeout =Math.min(coordinator.timeToNextPoll(startMs), timeoutMs);// note: 先获取已经拉取了的消息,存在就直接返回// fetcher 内部有一个 completedFetches 暂存预拉取的请求,可解析出 nextLineRecords 用于暂存预拉取的消息// 从 nextLineRecords 获取消息时,先判断一下状态(如assigned、paused、position),// 然后获取到消息后,再更新 subscriptions 中的 position 位置(值为下一个的offset), 注意这个时候还没commit// if data is available already, return it immediatelyfinalMap<TopicPartition,List<ConsumerRecord<K,V>>> records = fetcher.fetchedRecords();if(!records.isEmpty()){return records;}// note: 没有预拉取的消息,发送拉取请求(实际没发) // 先找到partition的leader,检查可用,检查没有待处理的请求,然后从 subscriptions 获取 position,构建ClientRequest暂存// 以及设置listener (成功则处理结果入队列completedFetches)// send any new fetches (won't resend pending fetches)
  2. fetcher.sendFetches();// We do not want to be stuck blocking in poll if we are missing some positions// since the offset lookup may be backing off after a failure// NOTE: the use of cachedSubscriptionHashAllFetchPositions means we MUST call// updateAssignmentMetadataIfNeeded before this method.if(!cachedSubscriptionHashAllFetchPositions && pollTimeout > retryBackoffMs){
  3. pollTimeout = retryBackoffMs;}// note: 轮询等待,详见下文
  4. client.poll(pollTimeout, startMs,()->{// since a fetch might be completed by the background thread, we need this poll condition// to ensure that we do not block unnecessarily in poll()return!fetcher.hasCompletedFetches();});// after the long poll, we should check whether the group needs to rebalance// prior to returning data so that the group can stabilize fasterif(coordinator.rejoinNeededOrPending()){returnCollections.emptyMap();}return fetcher.fetchedRecords();}

ConsumerNetworkClient#poll

  1. /**
  2. * Poll for any network IO.
  3. * @param timeout timeout in milliseconds
  4. * @param now current time in milliseconds
  5. * @param disableWakeup If TRUE disable triggering wake-ups
  6. */publicvoidpoll(long timeout,long now,PollCondition pollCondition,boolean disableWakeup){// note: 触发已完成的请求的回调处理器 (有一个pendingCompletion的队列)// there may be handlers which need to be invoked if we woke up the previous call to pollfirePendingCompletedRequests();
  7. lock.lock();try{// note: 处理断开的连接 (pendingDisconnects队列)// Handle async disconnects prior to attempting any sendshandlePendingDisconnects();// note: 实际上这里才真正发出请求。。 前面那个feature只是构建request// 前面准备的 ClientRequest 放在一个 UnsentRequests (内部map, key:Node,val: requests)中// 这里面取出来进行发送, kafkaClient.ready -> send// send all the requests we can send nowlong pollDelayMs =trySend(now);
  8. timeout =Math.min(timeout, pollDelayMs);// note: 这里主要是判断是否需要阻塞 poll (timeout是否为0) 如果没有待完成且判断应该阻塞(completedFetches为空)则阻塞// poll 里面是从 sockets 里面读写数据// check whether the poll is still needed by the caller. Note that if the expected completion// condition becomes satisfied after the call to shouldBlock() (because of a fired completion// handler), the client will be woken up.if(pendingCompletion.isEmpty()&&(pollCondition ==null|| pollCondition.shouldBlock())){// if there are no requests in flight, do not block longer than the retry backoffif(client.inFlightRequestCount()==0)
  9. timeout =Math.min(timeout, retryBackoffMs);
  10. client.poll(Math.min(maxPollTimeoutMs, timeout), now);
  11. now = time.milliseconds();}else{
  12. client.poll(0, now);}// note: 检查断开的链接,判断node连接是否断开,是则从unset中取出对应requests,构建response加到completedFetches中// handle any disconnects by failing the active requests. note that disconnects must// be checked immediately following poll since any subsequent call to client.ready()// will reset the disconnect statuscheckDisconnects(now);if(!disableWakeup){// trigger wakeups after checking for disconnects so that the callbacks will be ready// to be fired on the next call to poll()maybeTriggerWakeup();}// throw InterruptException if this thread is interruptedmaybeThrowInterruptException();// note: 再发一次请求,推测是可能部分 node 的连接在第一次没有ready (没ready会进行初始化,并返回false)// try again to send requests since buffer space may have been// cleared or a connect finished in the polltrySend(now);// fail requests that couldn't be sent if they have expiredfailExpiredRequests(now);// clean unsent requests collection to keep the map from growing indefinitely
  13. unsent.clean();}finally{
  14. lock.unlock();}// called without the lock to avoid deadlock potential if handlers need to acquire locksfirePendingCompletedRequests();}

自动提交

提交 offset 是为了防止重启或 rebalance 后,导致本地 position 丢失无法正常拉取后面的消息。

入口是

  1. ConsumerCoordinator#maybeAutoCommitOffsetsAsync

触发逻辑主要是

  • KafkaConsumer#poll 拉消息
  • -> KafkaConsumer#updateAssignmentMetadataIfNeeded
  • -> ConsumerCoordinator#poll -> maybeAutoCommitOffsetsAsync (也是先构建请求存 unset 里面,等拉消息的时候再发出去)
  1. publicvoidmaybeAutoCommitOffsetsAsync(long now){// 这里用来判断是否满足自动提交的间隔if(autoCommitEnabled && now >= nextAutoCommitDeadline){this.nextAutoCommitDeadline = now + autoCommitIntervalMs;doAutoCommitOffsetsAsync();}}
标签: java kafka

本文转载自: https://blog.csdn.net/Wu_Shang001/article/details/134340445
版权归原作者 不如敲代码 所有, 如有侵权,请联系我们删除。

“KafkaConsumer 消费逻辑”的评论:

还没有评论