0


FlinkCDC实时读取PostgreSQL

一、准备(PG版本为11.6)

1.更改配置文件postgresql.conf

[postgres@hostname data]$ vim postgresql.conf
# 更改wal日志方式为logical
wal_level = logical                 # minimal, replica, or logical

# 更改wal发送最大进程数(默认值为10),这个值和上面的solts设置一样
max_wal_senders = 20                # max number of walsender processes
# 中断那些停止活动超过指定毫秒数的复制连接,可以适当设置大一点(默认值为60s)
wal_sender_timeout = 180s # in milliseconds; 0 disable  

# 更改solts最大数量(默认值为10),flink-cdc默认一张表占用一个slots
max_replication_slots = 20          # max number of replication slots 

wal_level必须更改,其它参数选着性更改,如果同步表数量超过10张建议修改为合适的值

重启pg生效

2.新建用户并且给用户复制流权限(例如在navicat中操作)

-- 创建具有流复制权限的用户flink
CREATE USER flink login replication encrypted password '123456';
-- 给用户flink赋予数据库连接权限
GRANT CONNECT ON DATABASE postgres TO flink;
-- 把当前库所有表查询权限赋给用户flink
GRANT SELECT ON ALL TABLES IN SCHEMA public TO flink;

3.发布表

-- 设置发布为true
update pg_publication set puballtables=true where pubname is not null;
-- 把所有表进行发布
CREATE PUBLICATION dbz_publication FOR ALL TABLES;
-- 查询哪些表已经发布
select * from pg_publication_tables;

4.更改表的复制标识包含更新和删除的值

-- 更改复制标识包含更新和删除之前值
ALTER TABLE xxxxxx REPLICA IDENTITY FULL;
-- 查看复制标识(为f标识说明设置成功)
select relreplident from pg_class where relname='xxxxxx';

二、代码示例

import com.alibaba.ververica.cdc.connectors.postgres.PostgreSQLSource;
import com.yogorobot.gmall.realtime.function.MyDebezium;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;

import java.time.Duration;
import java.util.Properties;

public class Flink_CDCWIthProduct {
    private static final long DEFAULT_HEARTBEAT_MS = Duration.ofMinutes(5).toMillis();
        //功能:测试实时读取pgsql数据
    public static void main(String[] args) throws Exception {
        
        //TODO 创建执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Properties properties = new Properties();
        properties.setProperty("snapshot.mode", "never");
        properties.setProperty("debezium.slot.name", "pg_cdc");
        properties.setProperty("debezium.slot.drop.on.stop", "true");
        properties.setProperty("include.schema.changes", "true");
        //使用连接器配置属性启用定期心跳记录生成
        properties.setProperty("heartbeat.interval.ms", String.valueOf(DEFAULT_HEARTBEAT_MS));

        //TODO 创建Flink-PgSQL-CDC的Source 读取生产环境pgsql数据库
        SourceFunction<String> pgsqlSource = PostgreSQLSource.<String>builder()
                .hostname("pgr-***.pg.rds.aliyuncs.com")
                .port(1921)
                .database("jarvis_ticket") // monitor postgres database
                .schemaList("jarvis_ticket")  // monitor inventory schema
                .tableList("jarvis_ticket.t_category") // monitor products table
                .username("***")
                .password("***")
                //反序列化
                .deserializer(new MyDebezium())
                //标准逻辑解码输出插件
                .decodingPluginName("pgoutput")
                //配置
                .debeziumProperties(properties)
                .build();

        //TODO 使用CDC Source从PgSQL读取数据
        DataStreamSource<String> pgsqlDS = env.addSource(pgsqlSource);

        //TODO 将数据输出到kafka中
     //pgsqlDS.addSink(MyKafkaUtil.getKafkaSink("***"));

        //TODO 打印到控制台
        pgsqlDS.print();

        //TODO 执行任务
        env.execute();
    }
}

properties相关配置解读:

snapshot.mode(debezium.snapshot.mode)

initial:默认设置,第一次启动创建数据库快照,后面根据记录偏移量继续读取;
never:从不建立快照,如果本地无偏移量,从最后的log开始读取;
always:每次启动都建立快照;
exporter:和initial相同,不同之处在于其不会对表上锁,使用set transaction isolation level repeatable read,可重复读的隔离级别。
实现类is.debezium.connector.postgresql.snapshot.ExportedSnapshotter
**custom **:用户自定义 快照,配合debezium.snapshot.custom.class使用

debezium.slot.name = 'pg_cdc'

flinkcdc创建的逻辑复制槽

import com.alibaba.fastjson.JSONObject;
import com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;

import java.util.List;

public class MyDebezium implements DebeziumDeserializationSchema<String> {
    @Override
    public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {
        //1.创建一个JSONObject用来存放最终封装好的数据
        JSONObject result = new JSONObject();

        //2.获取数据库以及表名
        String topic = sourceRecord.topic();
        String[] split = topic.split("\\.");

        //数据库名
        String schema = split[1];
        //表名
        String tableName = split[2];

        //4.获取数据
        Struct value = (Struct) sourceRecord.value();

        //5.获取before数据
        Struct structBefore = value.getStruct("before");
        JSONObject beforeJson = new JSONObject();
        if (structBefore != null) {
            Schema schemas = structBefore.schema();
            List<Field> fields = schemas.fields();
            for (Field field : fields) {
                beforeJson.put(field.name(), structBefore.get(field));
            }
        }

        //6.获取after数据
        Struct structAfter = value.getStruct("after");
        JSONObject afterJson = new JSONObject();
        if (structAfter != null) {
            Schema schemas = structAfter.schema();
            List<Field> fields = schemas.fields();
            for (Field field : fields) {
                afterJson.put(field.name(), structAfter.get(field));
            }
        }

        String type="update";
        if(structBefore==null){
            type="insert";
        }
        if(structAfter==null){
            type="delete";
        }

        //将数据封装到JSONObject中
        result.put("schema", schema);
        result.put("tableName", tableName);
        result.put("before", beforeJson);
        result.put("after", afterJson);
        result.put("type", type);

        //将数据发送至下游
        collector.collect(result.toJSONString());
    }

    @Override
    public TypeInformation<String> getProducedType() {
        return BasicTypeInfo.STRING_TYPE_INFO;
    }
}

参考文章:整合flink-cdc实现实时读postgrasql


本文转载自: https://blog.csdn.net/Joseph_Mino/article/details/132768935
版权归原作者 SeniorCollector 所有, 如有侵权,请联系我们删除。

“FlinkCDC实时读取PostgreSQL”的评论:

还没有评论