Flink CDC (Flink Change Data Capture)(Flink中改变数据捕获) 是基于数据库的日志 CDC 技术,实现了全增量一体化读取的数据集成框架。搭配Flink计算框架,Flink CDC 可以高效实现海量数据的实时集成。
改变你们的一个误区,cdc只有检测功能,不能对数据库中的数据进行修改删除添加
第一种用FlinkSql实现
第一步:创建FlinkSql环境
//创建流式环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//创建流式表环境
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
第二步:配置mysql
去mysql中的my.cnf中更改配置,作者的my.cnf是在/etc目录下面的,如果去进行修改可能权限不够
命令:sudo vim /etc/my.cnf
以上图片的四个配置缺一不可,框起来的一定要注意,binlog - do -db=目标数据库名
更改完之后要重启mysql,这一步很重要,否则还是之前的配置
重启命令:sudo systemctl restart mysqld
查看数据库命令:sudo systemctl status mysqld
有箭头指示就表示完成了
第三步:在目标数据库中创建需要检测的表
并在表中插入数据
第四步:去flink官网找到连接mysql-cdc的语法格式
官网网址:MySQL | Apache Flink CDC
上面是我从flink官网上截下来的,我们只需要将官网上的内容复制,自己去修改就可以了
tEnv.executeSql("CREATE TABLE Person (\n" +
" id INT,\n"+
" name STRING,\n" +
" age BIGINT,\n" +
" sex String,\n" +
" PRIMARY KEY (id) NOT ENFORCED\n"+ --一定要加上主键,否则就会报错
") WITH (\n" +
" 'connector' = 'mysql-cdc',\n" + --必填
" 'hostname'='hadoop102',\n" + --主机名,必填
" 'port'='3306',\n" + --端口号,必填
" 'username' = 'root',\n" + --用户名,必填
" 'password'='123456',\n" + --密码,必填
" 'database-name'='zg3',\n" + --目标数据库名,必填
" 'table-name'='Person',\n" + --目标表名,必填
" 'jdbc.properties.useSSL'='false'\n" + --官网上可以找到,必填
");");
以上 是检测mysql中信息改的设置
报错
Caused by: org.apache.flink.table.api.ValidationException: Multiple factories for identifier 'mysql-cdc' that implement 'org.apache.flink.table.factories.DynamicTableFactory' found in the classpath.
如果你报这种错,就要看一下你自己的pom文件
**这两个依赖冲突了 **
这样就可以解决报错了
对刚才数据进行修改名字
**如果修改数据库,但是idea更新不出来值,这可能是好多人电脑的问题 **
**这时候将并行度添加为1就可以了 **
第五步:将以上数据以json格式传送到kafka中
官网网址:Debezium | Apache Flink
Debezium-json:是Debezium为变更日志提供的统一格式结构。它是一种特定格式的JSON,用于描述数据库中的变更事件,如插入、更新或删除操作。这些事件可以由Debezium从源数据库捕获,并转换为JSON格式的消息,然后发布到消息队列(如Kafka)或对象存储(如OSS)中
tEnv.executeSql("CREATE TABLE kfk_cdc (\n" +
" id INT,\n" +
" name STRING,\n" +
" age BIGINT,\n" +
" sex String,\n" +
" PRIMARY KEY (id) NOT ENFORCED\n"+
") WITH (\n" +
" 'connector' = 'kafka',\n" +
" 'topic' = 'mysql_cdc',\n" + --写到kafka的主题,必填
" 'properties.bootstrap.servers' = 'hadoop102:9092',\n" + --kafka服务器名
" 'properties.group.id' = 'testGroup',\n" +
" 'scan.startup.mode' = 'earliest-offset',\n" +
" 'format' = 'debezium-json'\n" + --日志json格式,必填
")");
tEnv.executeSql("insert into kfk_cdc select * from Person");
最后将目标表中的数据写到kafka的表中,因为flinksql连接kafka底层会将kafka表中数据自动写到kafka中
可能这样你们看不清,我把json数据美化一下
第二种用FlinkApi实现
第二步,第三步和FlinkSql一样
第四步从官网上复制: Overview | Apache Flink CDC
//免密配置
Properties properties = new Properties();
properties.put("useSSL","false");
MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
.hostname("hadoop102") --必填 主机名
.port(3306) --必填 端口号
.databaseList("zg3") // set captured database --必填 数据库
.tableList("zg3.Person")// set captured table --必填 数据表
.username("root") --必填 用户名
.password("123456") --必填 密码
.deserializer(new JsonDebeziumDeserializationSchema()) --反序列化器
.jdbcProperties(properties) --jdbc配置,用来写免密配置
.build();
第五步:获取上一步源数据
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// enable checkpoint
env.enableCheckpointing(3000);
env
.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")
// set 4 parallel source tasks
.setParallelism(1)
.print(); // use parallelism 1 for sink to keep message ordering
env.execute("Print MySQL Snapshot + Binlog");
第六步:将数据转化为json格式
第一种:StringDebeziumDeserializationSchema()
SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={transaction_id=null, ts_sec=1712331615, file=, pos=0}} ConnectRecord{topic='mysql_binlog_source.zg3.Person', kafkaPartition=null, key=Struct{id=2}, keySchema=Schema{mysql_binlog_source.zg3.Person.Key:STRUCT}, value=Struct{after=Struct{id=2,name=中国,age=22,sex=男},source=Struct{version=1.9.7.Final,connector=mysql,name=mysql_binlog_source,ts_ms=0,db=zg3,table=Person,server_id=0,file=,pos=0,row=0},op=r,ts_ms=1712331615095}, valueSchema=Schema{mysql_binlog_source.zg3.Person.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
.hostname("hadoop102")
.port(3306)
.databaseList("zg3") // set captured database
.tableList("zg3.Person")// set captured table
.username("root")
.password("123456")
.deserializer(new StringDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
.jdbcProperties(properties)
.build();
第二种: JsonDebeziumDeserializationSchema()
{"before":null,"after":{"id":2,"name":"中国","age":22,"sex":"男"},"source":{"version":"1.9.7.Final","connector":"mysql","name":"mysql_binlog_source",
"ts_ms":0,"snapshot":"false","db":"zg3","sequence":null,"table":"Person",
"server_id":0,"gtid":null,"file":"","pos":0,"row":0,"thread":null,"query":null},
"op":"r","ts_ms":1712331713335,"transaction":null}
MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
.hostname("hadoop102")
.port(3306)
.databaseList("zg3") // set captured database
.tableList("zg3.Person")// set captured table
.username("root")
.password("123456")
.deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
.jdbcProperties(properties)
.build();
第二种更加的符合我们日常的json格式
但我们不想其余东西,只想要after、before、database、table 、operation
这时候我们就需要自定义了
public static class PersonDeserialization implements DebeziumDeserializationSchema <String>{
@Override
public void deserialize(SourceRecord sourceRecord, Collector collector) throws Exception {
//获取database和table
String topic = sourceRecord.topic();
String[] split = topic.split("\\.");
String database = split[1];
String table = split[2];
JSONObject data = new JSONObject();
//获取value值
//获取before值
Struct value = (Struct) sourceRecord.value();
Struct before = value.getStruct("before");
JSONObject beforeData = new JSONObject();
if(before!=null){
for (Field field : before.schema().fields()) {
Object o = before.get(field);
beforeData.put(field.name(),o);
}
}else{
before=null;
}
//获取after值
Struct after = value.getStruct("after");
JSONObject afterData = new JSONObject();
for (Field field : after.schema().fields()) {
Object o = after.get(field);
afterData.put(field.name(),o);
}
data.put("before",beforeData);
data.put("after",afterData);
//获取操作类型
Envelope.Operation operation = Envelope.operationFor(sourceRecord);
//装配数据
JSONObject object = new JSONObject();
object.put("database",database);
object.put("table",table);
object.put("before",beforeData);
object.put("after",afterData);
collector.collect(object.toString());
}
@Override
public TypeInformation getProducedType() {
return BasicTypeInfo.STRING_TYPE_INFO;//这里一般就是写String类型了
}
}
public static class PersonDeserialization implements DebeziumDeserializationSchema <String>{ @Override public void deserialize(SourceRecord sourceRecord, Collector collector) throws Exception { //获取database和table String topic = sourceRecord.topic(); String[] split = topic.split("\\."); String database = split[1]; String table = split[2]; JSONObject data = new JSONObject(); //获取value值 Struct value = (Struct) sourceRecord.value(); Struct before = value.getStruct("before"); JSONObject beforeData = new JSONObject(); if(before!=null){ for (Field field : before.schema().fields()) { Object o = before.get(field); beforeData.put(field.name(),o); } }else{ before=null; } Struct after = value.getStruct("after"); JSONObject afterData = new JSONObject(); for (Field field : after.schema().fields()) { Object o = after.get(field); afterData.put(field.name(),o); } data.put("before",beforeData); data.put("after",afterData); //获取操作类型 Envelope.Operation operation = Envelope.operationFor(sourceRecord); //装配数据 JSONObject object = new JSONObject(); object.put("database",database); object.put("table",table); object.put("before",beforeData); object.put("after",afterData); collector.collect(object.toString()); } @Override public TypeInformation getProducedType() { return BasicTypeInfo.STRING_TYPE_INFO; } }
上面可以写成工具类,直接使用
是不是就能满足我们想要的数据了
版权归原作者 编程如荒,独断万古 所有, 如有侵权,请联系我们删除。