0


18 张图手把手教你使用 Canal Adapter 同步 MySQL 数据到 ES8,建议收藏!

要将

MySQL

的数据同步到

ES8

中总共有如下几个配置,每一个都是必须的

  1. MySQL
    
    开启
    binlog
    
    日志,并且选择
    ROW
    
    模式;

2.初始化

Canal

数据库,并且增加对应的数据库账号和开启

slave

权限;

3.启动

Canal Server

Canal Adapter

并配置对应

ES8

的适配器;

4.安装

ES8

并且提前创建对应的数据索引,否则同步不成功。

MySQL 相关配置

检查

MySQL

当前是否开启

binlog

,执行如下命令

mysql> show variables like '%log_bin%';

图片

如果没有开启,则通过修改

my.cnf

配置文件来进行开启,并且配置成

ROW

模式。

开启 binlog

cat /etc/my.cnf
# log_bin
[mysqld]
log-bin = /var/lib/mysql/binlogs/mysql-bin #开启binlog
binlog-format = ROW #选择row模式
server_id = 1 #配置mysql replication需要定义,不能和canal的slaveId重复

配置 Canal 专属账号

创建一个独立的

canal

账号,并且授权查询和

SLAVE

以及

REPLICATION

权限,账号密码可以自定义,这里都设置成了

canal

,这个账号密码后续配置

canal

的时候都会用到。

CREATE USER canal IDENTIFIED BY 'canal';  
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%';
FLUSH PRIVILEGES;

安装 Canal

https://github.com/alibaba/canal/releases

wget

https://github.com/alibaba/canal/releases/download/canal-1.1.7/canal.deployer-1.1.7.tar.gz

wget

https://github.com/alibaba/canal/releases/download/canal-1.1.7/canal.adapter-1.1.7.tar.gz
Canal Adapter

数据订阅的方式支持两种,直连

Canal Server

或者 订阅

Kafka/RocketMQ

的消息,我们这里是单机,所以直连 Server。

启动 Canal Server

解压

canal.deployer

压缩包,修改

deployer/conf/example/instance.properties

配置文件,将下面的属性配置成自己设置的值

canal.instance.master.address=127.0.0.1:3306 

canal.instance.dbUsername = canal  
canal.instance.dbPassword = canal

然后启动

Server
./bin/startup.sh

查看日志

# 查看 server 日志
tail -f logs/canal/canal.log
# 查看 instance 日志
tail -f logs/example/example.log

配置 Canal Adapter

Canal Adapter

的配置分配启动器的配置文件和适配器的配置问题,启动器的配置文件为

application.yml

主要用来配置协议以及配置使用什么适配器。

启动器配置

server:
  port: 8081
spring:
  jackson:
    date-format: yyyy-MM-dd HH:mm:ss
    time-zone: GMT+8
    default-property-inclusion: non_null

canal.conf:
  mode: tcp #tcp kafka rocketMQ rabbitMQ
  flatMessage: true
  zookeeperHosts:
  syncBatchSize: 1000
  retries: -1
  timeout:
  accessKey:
  secretKey:
  consumerProperties:
    # canal tcp consumer
    canal.tcp.server.host: 127.0.0.1:11111
    canal.tcp.zookeeper.hosts:
    canal.tcp.batch.size: 500
    canal.tcp.username:
    canal.tcp.password:
    # kafka consumer
    # kafka.bootstrap.servers: 127.0.0.1:9092
    # kafka.enable.auto.commit: false
    # kafka.auto.commit.interval.ms: 1000
    # kafka.auto.offset.reset: latest
    # kafka.request.timeout.ms: 40000
    # kafka.session.timeout.ms: 30000
    # kafka.isolation.level: read_committed
    # kafka.max.poll.records: 1000
    # rocketMQ consumer
    # rocketmq.namespace:
    # rocketmq.namesrv.addr: 127.0.0.1:9876
    # rocketmq.batch.size: 1000
    # rocketmq.enable.message.trace: false
    # rocketmq.customized.trace.topic:
    # rocketmq.access.channel:
    # rocketmq.subscribe.filter:
    # rabbitMQ consumer
    # rabbitmq.host:
    # rabbitmq.virtual.host:
    # rabbitmq.username:
    # rabbitmq.password:
    # rabbitmq.resource.ownerId:

  srcDataSources:
    defaultDS:
      url: jdbc:mysql://127.0.0.1:3306/ry-vue?useUnicode=true
      username: root
      password: 123456
  canalAdapters:
  - instance: example # canal instance Name or mq topic name
    groups:
    - groupId: g1
      outerAdapters:
        - name: es8
          key: es-key
          hosts: https://127.0.0.1:9200 # 127.0.0.1:9200 for rest mode
          properties:
            mode: rest # transport or rest
            security.auth: elastic:oQuOvvZWZ_Yl*MP4Qdx+
            security.ca.path: /etc/canal/http_ca.crt
            cluster.name: docker-cluster
        - name: logger
#      - name: rdb
#        key: mysql1
#        properties:
#          jdbc.driverClassName: com.mysql.jdbc.Driver
#          jdbc.url: jdbc:mysql://127.0.0.1:3306/mytest2?useUnicode=true
#          jdbc.username: root
#          jdbc.password: 121212
#          druid.stat.enable: false
#          druid.stat.slowSqlMillis: 1000
#      - name: rdb
#        key: oracle1
#        properties:
#          jdbc.driverClassName: oracle.jdbc.OracleDriver
#          jdbc.url: jdbc:oracle:thin:@localhost:49161:XE
#          jdbc.username: mytest
#          jdbc.password: m121212
#      - name: rdb
#        key: postgres1
#        properties:
#          jdbc.driverClassName: org.postgresql.Driver
#          jdbc.url: jdbc:postgresql://localhost:5432/postgres
#          jdbc.username: postgres
#          jdbc.password: 121212
#          threads: 1
#          commitSize: 3000
#      - name: hbase
#        properties:
#          hbase.zookeeper.quorum: 127.0.0.1
#          hbase.zookeeper.property.clientPort: 2181
#          zookeeper.znode.parent: /hbase

#      - name: kudu
#        key: kudu
#        properties:
#          kudu.master.address: 127.0.0.1 # ',' split multi address
#      - name: phoenix
#        key: phoenix
#        properties:
#          jdbc.driverClassName: org.apache.phoenix.jdbc.PhoenixDriver
#          jdbc.url: jdbc:phoenix:127.0.0.1:2181:/hbase/db
#          jdbc.username:
#          jdbc.password:

简单说明

srcDataSources

:表示需要同步的数据库的配置信息

canalAdapters

canal

的适配器配置,下面可以配置多个

instance
instance

:需要跟我们上面启动

Canal Server

里面的

instance

一致,默认为

example
outerAdapters

:表示我们需要使用的适配器的列表

name

:表示我们使用的是哪个适配器,

es8

表示使用的是

es8

适配器,其他的可以参考解压后的

conf

下面的目录名称

properties

properties

下面会有几个重要的配置,分别是协议类型

mode

ES

8 的账号密码

security.auth

,以及集群名称

cluster.name

,还有一个

security.ca.path CA

证书路径,这一项在官方的代码中输出没有的,因为官方并不支持

ES8

TL

S 认证,对应 ES8 的部署的时候需要关闭

ES8

的安全功能,我这边自己基于源码做了一下改造支持,感兴趣可以看

Github

上面的源码

https://github.com/zhuSilence/canal/commit/d5dba78b78183b7de1472cdc6500ac2c8dba6b66

适配器配置

在上面的启动器的配置中我们已经配置了

ES8

作为适配器,那具体要同步的是哪张表,以及对应的

ES

中是索引是哪个怎么配置呢?这些配置就放在适配器的配置里面,每一个适配器的配置都是一个想要同步到

ES

的模板配置。

这里假设我有两张表,结构如下,一张主表

ead_advertiser

,一张从表

ead_advertiser_setting

,是一个一对多的关系。

CREATE TABLE `ead_advertiser` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '广告主信息表',
  `user_id` bigint(20) NOT NULL COMMENT '关联的登录用户 id',
  `advertiser_name` varchar(45) NOT NULL COMMENT '广告主主体名称',
  `advertiser_email` varchar(255) NOT NULL COMMENT '广告主主体邮箱',
  `advertiser_phone` varchar(20) NOT NULL COMMENT '广告主主体联系方式',
  `advertiser_type` tinyint(1) unsigned NOT NULL DEFAULT '0' COMMENT '广告主类型0 广告主 1 代理商',
  `status` tinyint(4) unsigned NOT NULL DEFAULT '1' COMMENT '状态-1 删除 0 禁用 1 正常',
  `gmt_create` datetime NOT NULL COMMENT '创建时间',
  `gmt_update` datetime NOT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`),
  UNIQUE KEY `uk_email` (`advertiser_email`) COMMENT '邮箱唯一索引',
  UNIQUE KEY `uk_phone` (`advertiser_phone`) COMMENT '手机号唯一索引'
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COMMENT='广告主信息表';

CREATE TABLE `ead_advertiser_setting` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ead_advertise 配置信息表主键',
  `advertiser_id` bigint(20) NOT NULL COMMENT '主表 id',
  `setting_key` varchar(255) NOT NULL COMMENT '扩展字段 key',
  `setting_value` varchar(255) DEFAULT NULL COMMENT '扩展字段 value',
  `gmt_create` datetime NOT NULL COMMENT '创建时间',
  `gmt_update` datetime NOT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  PRIMARY KEY (`id`),
  UNIQUE KEY `uk_advertiser_id_setting_key` (`advertiser_id`,`setting_key`) USING BTREE COMMENT 'key 唯一索引',
  KEY `idx_advertiser_id` (`advertiser_id`) COMMENT '广告主 id 索引'
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COMMENT='广告主信息扩展表';

数据如下所示

图片

图片

现在想把这两张表形成一张大宽表,

setting_key

里面的内容作为一个独立的列拼接在主表上面,然后将拼接后的数据同步到

ES

中。

图片

转换的

SQL

如下

SELECT
 a.id AS _id,
 a.user_id AS user_id,
 a.advertiser_name AS advertiser_name,
 a.advertiser_email AS advertiser_email,
 a.advertiser_phone AS advertiser_phone,
 a.advertiser_type AS advertiser_type,
 a.status AS status,
 a.gmt_create AS gmt_create,
 a.gmt_update AS gmt_update,
 c.advertiser_id AS advertiser_id,
 c._sign_time AS _sign_time,
 c._sign_account AS _sign_account 
FROM
 ead_advertiser a
 LEFT JOIN (
 SELECT
  b.advertiser_id AS advertiser_id,
  max((
   CASE
     b.setting_key 
     WHEN '_sign_time' THEN
     b.setting_value ELSE '' 
    END 
    )) AS _sign_time,
   max((
    CASE
      b.setting_key 
      WHEN '_sign_account' THEN
      b.setting_value ELSE '' 
     END 
     )) AS _sign_account 
   FROM
    ead_advertiser_setting b 
   GROUP BY
    b.advertiser_id 
    ) c ON ((
    a.id = c.advertiser_id 
 ))

那么对应的适配的配置如下所示

dataSourceKey: defaultDS
destination: example
outerAdapterKey: es-key
groupId: g1
esMapping:
  _index: search-advertiser_info
  _id: _id
  upsert: true
  #pk: id
  sql: "SELECT a.id AS _id,a.user_id AS user_id,a.advertiser_name AS advertiser_name,a.advertiser_email AS advertiser_email,a.advertiser_phone AS advertiser_phone,a.advertiser_type AS advertiser_type,a.status AS status,a.gmt_create AS gmt_create,a.gmt_update AS gmt_update,c.advertiser_id AS advertiser_id,c._sign_time AS _sign_time,c._sign_account AS _sign_account FROM ead_advertiser a LEFT JOIN (SELECT b.advertiser_id AS advertiser_id, max((CASE b.setting_key WHEN '_sign_time' THEN b.setting_value ELSE '' END )) AS _sign_time,max((CASE b.setting_key WHEN '_sign_account' THEN b.setting_value ELSE '' END )) AS _sign_account FROM ead_advertiser_setting b GROUP BY b.advertiser_id ) c ON ((a.id = c.advertiser_id ))"
  #  objFields:
  #    _labels: array:;
  #etlCondition: " where a.gmt_update>='{0}'"
  commitBatch: 1

简单说明:

dataSourceKey: defaultDS
destination: example
outerAdapterKey: es-key
groupId: g1

上面的几个配置,都需要跟启动器里面的配置保持一致。

esMappin

g:该配置是表示的是如何将

MySQL

的数据同步到

ES

中,配置比较复杂,其中

_index

表示

ES

的索引(需要提前创建);

_id

pk

二选一配置,表示使用查询出来的哪个字段作为唯一值;

upsert

表示对应主键的数据不存在的时候执行插入动作,存在的时候执行更新动作;

sql

:表示要同步的数据,这个的

SQL

形式要求会比较严格

sql

支持多表关联自由组合, 但是有一定的限制:

  1. 主表不能为子查询语句
  2. 只能使用 left outer join 即最左表一定要是主表
  3. 关联从表如果是子查询不能有多张表
  4. sql 中不能有 where 查询条件(从表子查询中可以有 where 条件但是不推荐, 可能会造成数据同步的不一致, 比如修改了 where 条件中的字段内容)
  5. 关联条件只允许主外键的'='操作不能出现其他常量判断比如: on a.role_id=b.id and b.statues=1
  6. 关联条件必须要有一个字段出现在主查询语句中比如: on a.role_id=b.id 其中的 a.role_id 或者 b.id 必须出现在主 select 语句中

全量 ETL

配置好了启动器和适配器过后,我们就可以启动

Canal Adapter

了,在解压缩的目录中执行如下命令

# 启动启动器
./bin/startup.sh
# 查看日志
tail -f adapter.log

输出如下日志,表示启动成功

2024-04-14 16:11:17.746 [main] INFO  c.a.o.canal.adapter.launcher.loader.CanalAdapterLoader - Start adapter for canal-client mq topic: example-g1 succeed
2024-04-14 16:11:17.746 [Thread-4] INFO  c.a.otter.canal.adapter.launcher.loader.AdapterProcessor - =============> Start to connect destination: example <=============
2024-04-14 16:11:17.746 [main] INFO  c.a.o.canal.adapter.launcher.loader.CanalAdapterService - ## the canal client adapters are running now ......
2024-04-14 16:11:17.769 [main] INFO  c.a.otter.canal.adapter.launcher.CanalAdapterApplication - Started CanalAdapterApplication in 5.912 seconds (JVM running for 7.732)
2024-04-14 16:11:17.963 [Thread-4] INFO  c.a.otter.canal.adapter.launcher.loader.AdapterProcessor - =============> Subscribe destination: example succeed <=============

首次执行的时候,我们可以通过 ETL 功能,将全量的数据或者根据执行条件过滤后的数据同步到 ES8 中,如果要添加过滤条件,则需要在适配器的配置中增加如下配置和条件。

etlCondition: " where xxx"

通过执行如下命令进行全量 ETL

curl -X POST http://127.0.0.1:8081/etl/es8/search-advertiser_info.yml
search-advertiser_info.yml

则为适配器文件的名称。

在执行上面的命令之前,我们可以通过

kibana

看到

ES

中对应的索引里面

Document

数量为 0

图片

执行上述命令,日志如下

图片

img

再次查询

ES

,发现已经成功写入了五条数据。

图片

通过查询,可以看到有五条数据

图片

增量同步

这里我们挑选 id 为 4 的这条数据来看下更新后是否会自动同步,当前 id = 4 的数据如下

图片

ES8 中的数据如下

图片

然后我们修改一下

MySQL

中的数据,将

advertiser_phon

e 修改为

111111

,首先数据库中数据已经变了

图片

其次在

Canal Adapter

的日志中我们也可以看到如下日志

图片

与此同时我们再次查询

ES

发现数据也更新了

图片

同时我们再通过给 id 为 4 的记录增加两个扩展字段,

图片

图片

ES

中的数据也同步更新了,至此整个数据从

MySQL

同步的

ES8

已经基本实现了,后续其他的表也按照这种方式接入即可。

图片

使用 Docker 安装 ES8

Docker

安装

ES8

比较简单,按照官方文档直接操作就好了,这边就不演示了

 https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html

总结

今天给大家完成的演示了一下如何将

MySQL

的数据通过

Canal Adapter

同步到

ES

,功能很强大,但是实操的过程中还是会遇到很多问题的,感兴趣的小伙伴一定要自己动手实操一下,相信会有收获的。

标签: mysql adb 数据库

本文转载自: https://blog.csdn.net/H_Sino/article/details/137765283
版权归原作者 ISBN图书 所有, 如有侵权,请联系我们删除。

“18 张图手把手教你使用 Canal Adapter 同步 MySQL 数据到 ES8,建议收藏!”的评论:

还没有评论