声明
声明:本教程基于modelscope.cn的演示站进行本地搭建,环境为Windows
作者GitHub地址:https://github.com/2noise/ChatTTS
Webui体验地址:https://modelscope.cn/studios/AI-ModelScope/ChatTTS-demo/summary
第一步 克隆代码
先在终端输入以下内容,克隆modelscope的文件到本地
git clone https://www.modelscope.cn/studios/AI-ModelScope/ChatTTS-demo.git
克隆好之后进入文件目录
到了目录之后直接执行安装txt中的内容太慢了,换成国内源很快就能下好
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
第二步 安装库
下好之后也不能立马执行,需要在手动安装一些库
依此执行以下命令
pip install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install gradio -i https://pypi.tuna.tsinghua.edu.cn/simple
上面安装没有问题,执行以下代码
python app.py
启动等待程序下载完成(白条可能会卡住不动,因为他是一次显示很多的,看一下网络宽带有占用就行了,不要暂停程序!)
错误解决
我就遇到一个错误,说什么Windows不支持,然后我根据错误修改了一些代码我就能运行了,由于我第一次搭建是拿物理电脑搭建的,解决运行之后想着写一篇文章,然后用虚拟机继续搭建,遇到的错误又不一样了,烦死了,于是我直接把我物理机的core.py中的内容复制到虚拟机中的core.py就能运行了,直接复制以下代码覆盖克隆下来的core.py
core.py在ChatTTS目录下面
import os
import logging
from omegaconf import OmegaConf
import platform
import torch
from vocos import Vocos
from .model.dvae import DVAE
from .model.gpt import GPT_warpper
from .utils.gpu_utils import select_device
from .utils.infer_utils import count_invalid_characters, detect_language
from .utils.io_utils import get_latest_modified_file
from .infer.api import refine_text, infer_code
from huggingface_hub import snapshot_download
logging.basicConfig(level = logging.INFO)
class Chat:
def __init__(self, ):
self.pretrain_models = {}
self.normalizer = {}
self.logger = logging.getLogger(__name__)
def check_model(self, level = logging.INFO, use_decoder = False):
not_finish = False
check_list = ['vocos', 'gpt', 'tokenizer']
if use_decoder:
check_list.append('decoder')
else:
check_list.append('dvae')
for module in check_list:
if module not in self.pretrain_models:
self.logger.log(logging.WARNING, f'{module} not initialized.')
not_finish = True
if not not_finish:
self.logger.log(level, f'All initialized.')
return not not_finish
def load_models(self, source='huggingface', force_redownload=False, local_path='<LOCAL_PATH>', **kwargs):
if source == 'huggingface':
hf_home = os.getenv('HF_HOME', os.path.expanduser("~/.cache/huggingface"))
try:
download_path = get_latest_modified_file(os.path.join(hf_home, 'hub/models--2Noise--ChatTTS/snapshots'))
except:
download_path = None
if download_path is None or force_redownload:
self.logger.log(logging.INFO, f'Download from HF: https://huggingface.co/2Noise/ChatTTS')
download_path = snapshot_download(repo_id="2Noise/ChatTTS", allow_patterns=["*.pt", "*.yaml"])
else:
self.logger.log(logging.INFO, f'Load from cache: {download_path}')
elif source == 'local':
self.logger.log(logging.INFO, f'Load from local: {local_path}')
download_path = local_path
self._load(**{k: os.path.join(download_path, v) for k, v in OmegaConf.load(os.path.join(download_path, 'config', 'path.yaml')).items()}, **kwargs)
def _load(
self,
vocos_config_path: str = None,
vocos_ckpt_path: str = None,
dvae_config_path: str = None,
dvae_ckpt_path: str = None,
gpt_config_path: str = None,
gpt_ckpt_path: str = None,
decoder_config_path: str = None,
decoder_ckpt_path: str = None,
tokenizer_path: str = None,
device: str = None,
compile: bool = True,
):
if not device:
device = select_device(4096)
self.logger.log(logging.INFO, f'use {device}')
if vocos_config_path:
vocos = Vocos.from_hparams(vocos_config_path).to(device).eval()
assert vocos_ckpt_path, 'vocos_ckpt_path should not be None'
vocos.load_state_dict(torch.load(vocos_ckpt_path))
self.pretrain_models['vocos'] = vocos
self.logger.log(logging.INFO, 'vocos loaded.')
if dvae_config_path:
cfg = OmegaConf.load(dvae_config_path)
dvae = DVAE(**cfg).to(device).eval()
assert dvae_ckpt_path, 'dvae_ckpt_path should not be None'
dvae.load_state_dict(torch.load(dvae_ckpt_path, map_location='cpu'))
self.pretrain_models['dvae'] = dvae
self.logger.log(logging.INFO, 'dvae loaded.')
if gpt_config_path:
cfg = OmegaConf.load(gpt_config_path)
gpt = GPT_warpper(**cfg).to(device).eval()
assert gpt_ckpt_path, 'gpt_ckpt_path should not be None'
gpt.load_state_dict(torch.load(gpt_ckpt_path, map_location='cpu'))
if platform.system() != 'Windows':
gpt.gpt.forward = torch.compile(gpt.gpt.forward, backend='inductor', dynamic=True)
self.pretrain_models['gpt'] = gpt
spk_stat_path = os.path.join(os.path.dirname(gpt_ckpt_path), 'spk_stat.pt')
assert os.path.exists(spk_stat_path), f'Missing spk_stat.pt: {spk_stat_path}'
self.pretrain_models['spk_stat'] = torch.load(spk_stat_path).to(device)
self.logger.log(logging.INFO, 'gpt loaded.')
if decoder_config_path:
cfg = OmegaConf.load(decoder_config_path)
decoder = DVAE(**cfg).to(device).eval()
assert decoder_ckpt_path, 'decoder_ckpt_path should not be None'
decoder.load_state_dict(torch.load(decoder_ckpt_path, map_location='cpu'))
self.pretrain_models['decoder'] = decoder
self.logger.log(logging.INFO, 'decoder loaded.')
if tokenizer_path:
tokenizer = torch.load(tokenizer_path, map_location='cpu')
tokenizer.padding_side = 'left'
self.pretrain_models['tokenizer'] = tokenizer
self.logger.log(logging.INFO, 'tokenizer loaded.')
self.check_model()
def infer(
self,
text,
skip_refine_text=False,
refine_text_only=False,
params_refine_text={},
params_infer_code={'prompt':'[speed_5]'},
use_decoder=True,
do_text_normalization=False,
lang=None,
):
assert self.check_model(use_decoder=use_decoder)
if not isinstance(text, list):
text = [text]
if do_text_normalization:
for i, t in enumerate(text):
_lang = detect_language(t) if lang is None else lang
self.init_normalizer(_lang)
text[i] = self.normalizer[_lang].normalize(t, verbose=False, punct_post_process=True)
for i in text:
invalid_characters = count_invalid_characters(i)
if len(invalid_characters):
self.logger.log(logging.WARNING, f'Invalid characters found! : {invalid_characters}')
if not skip_refine_text:
text_tokens = refine_text(self.pretrain_models, text, **params_refine_text)['ids']
text_tokens = [i[i < self.pretrain_models['tokenizer'].convert_tokens_to_ids('[break_0]')] for i in text_tokens]
text = self.pretrain_models['tokenizer'].batch_decode(text_tokens)
if refine_text_only:
return text
text = [params_infer_code.get('prompt', '') + i for i in text]
params_infer_code.pop('prompt', '')
result = infer_code(self.pretrain_models, text, **params_infer_code, return_hidden=use_decoder)
if use_decoder:
mel_spec = [self.pretrain_models['decoder'](i[None].permute(0,2,1)) for i in result['hiddens']]
else:
mel_spec = [self.pretrain_models['dvae'](i[None].permute(0,2,1)) for i in result['ids']]
wav = [self.pretrain_models['vocos'].decode(i).cpu().numpy() for i in mel_spec]
return wav
def sample_random_speaker(self, ):
dim = self.pretrain_models['gpt'].gpt.layers[0].mlp.gate_proj.in_features
std, mean = self.pretrain_models['spk_stat'].chunk(2)
return torch.randn(dim, device=std.device) * std + mean
def init_normalizer(self, lang):
if lang not in self.normalizer:
from nemo_text_processing.text_normalization.normalize import Normalizer
self.normalizer[lang] = Normalizer(input_case='cased', lang=lang)
运行结果
执行app.py之后会得到一个地址,访问即可
访问就可以生成了
版权归原作者 广君有点高 所有, 如有侵权,请联系我们删除。