0


Kafka:消费者消费失败处理-重试队列

kafka没有重试机制不支持消息重试,也没有死信队列,因此使用kafka做消息队列时,需要自己实 现消息重试的功能。

实现

创建新的kafka主题作为重试队列:

  1. 创建一个topic作为重试topic,用于接收等待重试的消息。
  2. 普通topic消费者设置待重试消息的下一个重试topic。
  3. 从重试topic获取待重试消息储存到redis的zset中,并以下一次消费时间排序
  4. 定时任务从redis获取到达消费事件的消息,并把消息发送到对应的topic
  5. 同一个消息重试次数过多则不再重试

**代码实现 **

依赖

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.73</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.junit.vintage</groupId>
                    <artifactId>junit-vintage-engine</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>io.projectreactor</groupId>
            <artifactId>reactor-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

添加application.properties

# bootstrap.servers
spring.kafka.bootstrap-servers=node1:9092
# key序列化器
spring.kafka.producer.keyserializer=org.apache.kafka.common.serialization.StringSerializer
# value序列化器
spring.kafka.producer.valueserializer=org.apache.kafka.common.serialization.StringSerializer
# 消费组id:group.id
spring.kafka.consumer.group-id=retryGroup
# key反序列化器
spring.kafka.consumer.keydeserializer=org.apache.kafka.common.serialization.StringDeserializer
# value反序列化器
spring.kafka.consumer.valuedeserializer=org.apache.kafka.common.serialization.StringDeserializer
# redis数据库编号
spring.redis.database=0
# redis主机地址
spring.redis.host=node1
# redis端口
spring.redis.port=6379
# Redis服务器连接密码(默认为空)
spring.redis.password=
# 连接池最大连接数(使用负值表示没有限制)
spring.redis.jedis.pool.max-active=20
# 连接池最大阻塞等待时间(使用负值表示没有限制)
spring.redis.jedis.pool.max-wait=-1
# 连接池中的最大空闲连接
spring.redis.jedis.pool.max-idle=10
# 连接池中的最小空闲连接
spring.redis.jedis.pool.min-idle=0
# 连接超时时间(毫秒)
spring.redis.timeout=1000
# Kafka主题名称
spring.kafka.topics.test=tp_demo_retry_01
# 重试队列
spring.kafka.topics.retry=tp_demo_retry_02

AppConfig.java

import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;

@Configuration
public class AppConfig {
    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {

        RedisTemplate<String, Object> template = new RedisTemplate<>();
        // 配置连接工厂
        template.setConnectionFactory(factory);

        return template;
    }

}

RetryController .java

import com.lagou.kafka.demo.service.KafkaService;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.springframework.beans.factory.annotation.Value;

import java.util.concurrent.ExecutionException;

@RestController
public class RetryController {

    @Autowired
    private KafkaService kafkaService;

    @Value("${spring.kafka.topics.test}")
    private String topic;

    @RequestMapping("/send/{message}")
    public String sendMessage(@PathVariable String message) throws ExecutionException, InterruptedException {

        ProducerRecord<String, String> record = new ProducerRecord<>(
                topic,
                message
        );

        // 向业务主题发送消息
        String result = kafkaService.sendMessage(record);

        return result;
    }

}

KafkaService.java

import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;

import java.util.concurrent.ExecutionException;

@Service
public class KafkaService {

    private Logger log = LoggerFactory.getLogger(KafkaService.class);

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    public String sendMessage(ProducerRecord<String, String> record) throws ExecutionException, InterruptedException {

        SendResult<String, String> result = this.kafkaTemplate.send(record).get();
        RecordMetadata metadata = result.getRecordMetadata();
        String returnResult = metadata.topic() + "\t" + metadata.partition() + "\t" + metadata.offset();
        log.info("发送消息成功:" + returnResult);

        return returnResult;
    }

}

ConsumerListener.java

import com.lagou.kafka.demo.service.RetryService;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;

@Component
public class ConsumerListener {

    private static final Logger log = LoggerFactory.getLogger(ConsumerListener.class);

    @Autowired
    private RetryService kafkaRetryService;

    private static int index = 0;

    @KafkaListener(topics = "${spring.kafka.topics.test}", groupId = "${spring.kafka.consumer.group-id}")
    public void consume(ConsumerRecord<String, String> record) {
        try {
            // 业务处理
            log.info("消费的消息:" + record);
            index++;
            if (index % 2 == 0) {
                throw new Exception("该重发了");
            }
        } catch (Exception e) {
            log.error(e.getMessage());
            // 消息重试,实际上先将消息放到redis
            kafkaRetryService.consumerLater(record);
        }
    }

}

RetryService .java

import com.alibaba.fastjson.JSON;
import com.lzh.kafka.demo.entity.RetryRecord;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.header.Header;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.kafka.core.KafkaTemplate;

import java.nio.ByteBuffer;
import java.util.Calendar;

@Service
public class RetryService {
    private static final Logger log = LoggerFactory.getLogger(RetryService.class);

    /**
     * 消息消费失败后下一次消费的延迟时间(秒)
     * 第一次重试延迟10秒;第    二次延迟30秒,第三次延迟1分钟...
     */
    private static final int[] RETRY_INTERVAL_SECONDS = {10, 30, 1*60, 2*60, 5*60, 10*60, 30*60, 1*60*60, 2*60*60};

    /**
     * 重试topic
     */
    @Value("${spring.kafka.topics.retry}")
    private String retryTopic;

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    public void consumerLater(ConsumerRecord<String, String> record){
        // 获取消息的已重试次数
        int retryTimes = getRetryTimes(record);
        Date nextConsumerTime = getNextConsumerTime(retryTimes);
        // 如果达到重试次数,则不再重试
        if(nextConsumerTime == null) {
            return;
        }

        // 组织消息
        RetryRecord retryRecord = new RetryRecord();
        retryRecord.setNextTime(nextConsumerTime.getTime());
        retryRecord.setTopic(record.topic());
        retryRecord.setRetryTimes(retryTimes);
        retryRecord.setKey(record.key());
        retryRecord.setValue(record.value());

        // 转换为字符串
        String value = JSON.toJSONString(retryRecord);
        // 发送到重试队列
        kafkaTemplate.send(retryTopic, null, value);
    }

    /**
     * 获取消息的已重试次数
     */
    private int getRetryTimes(ConsumerRecord record){
        int retryTimes = -1;
        for(Header header : record.headers()){
            if(RetryRecord.KEY_RETRY_TIMES.equals(header.key())){
                ByteBuffer buffer = ByteBuffer.wrap(header.value());
                retryTimes = buffer.getInt();
            }
        }
        retryTimes++;
        return retryTimes;
    }

    /**
     * 获取待重试消息的下一次消费时间
     */
    private Date getNextConsumerTime(int retryTimes){
        // 重试次数超过上限,不再重试
        if(RETRY_INTERVAL_SECONDS.length < retryTimes) {
            return null;
        }

        Calendar calendar = Calendar.getInstance();
        calendar.add(Calendar.SECOND, RETRY_INTERVAL_SECONDS[retryTimes]);
        return calendar.getTime();
    }
}

RetryListener.java

import com.alibaba.fastjson.JSON;
import com.lzh.kafka.demo.entity.RetryRecord;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ZSetOperations;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;

import java.util.UUID;

@Component
@EnableScheduling
public class RetryListener {

    private Logger log = LoggerFactory.getLogger(RetryListener.class);

    private static final String RETRY_KEY_ZSET = "_retry_key";
    private static final String RETRY_VALUE_MAP = "_retry_value";
    @Autowired
    private RedisTemplate<String,Object> redisTemplate;
    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @Value("${spring.kafka.topics.test}")
    private String bizTopic;

    @KafkaListener(topics = "${spring.kafka.topics.retry}")
//    public void consume(List<ConsumerRecord<String, String>> list) {
//        for(ConsumerRecord<String, String> record : list){
    public void consume(ConsumerRecord<String, String> record) {

        System.out.println("需要重试的消息:" + record);
        RetryRecord retryRecord = JSON.parseObject(record.value(), RetryRecord.class);

        /**
         * 防止待重试消息太多撑爆redis,可以将待重试消息按下一次重试时间分开存储放到不同介质
         * 例如下一次重试时间在半小时以后的消息储存到mysql,并定时从mysql读取即将重试的消息储储存到redis
         */

        // 通过redis的zset进行时间排序
        String key = UUID.randomUUID().toString();
        redisTemplate.opsForHash().put(RETRY_VALUE_MAP, key, record.value());
        redisTemplate.opsForZSet().add(RETRY_KEY_ZSET, key, retryRecord.getNextTime());
    }
//    }

    /**
     * 定时任务从redis读取到达重试时间的消息,发送到对应的topic
     */
//    @Scheduled(cron="2 * * * * *")
    @Scheduled(fixedDelay = 2000)
    public void retryFromRedis() {
        log.warn("retryFromRedis----begin");
        long currentTime = System.currentTimeMillis();
        // 根据时间倒序获取
        Set<ZSetOperations.TypedTuple<Object>> typedTuples =
                redisTemplate.opsForZSet().reverseRangeByScoreWithScores(RETRY_KEY_ZSET, 0, currentTime);
        // 移除取出的消息
        redisTemplate.opsForZSet().removeRangeByScore(RETRY_KEY_ZSET, 0, currentTime);
        for(ZSetOperations.TypedTuple<Object> tuple : typedTuples){
            String key = tuple.getValue().toString();
            String value = redisTemplate.opsForHash().get(RETRY_VALUE_MAP, key).toString();
            redisTemplate.opsForHash().delete(RETRY_VALUE_MAP, key);
            RetryRecord retryRecord = JSON.parseObject(value, RetryRecord.class);
            ProducerRecord record = retryRecord.parse();

            ProducerRecord recordReal = new ProducerRecord(
                    bizTopic,
                    record.partition(),
                    record.timestamp(),
                    record.key(),
                    record.value(),
                    record.headers()
            );

            kafkaTemplate.send(recordReal);
        }
        // todo 发生异常将发送失败的消息重新发送到redis
    }
}

RetryRecord.java

package com.lzh.kafka.demo.entity;

import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.header.Header;
import org.apache.kafka.common.header.internals.RecordHeader;

import java.nio.ByteBuffer;

public class RetryRecord {

    public static final String KEY_RETRY_TIMES = "retryTimes";

    private String key;
    private String value;

    private Integer retryTimes;
    private String topic;
    private Long nextTime;

    public RetryRecord() {
    }

    public String getKey() {
        return key;
    }

    public void setKey(String key) {
        this.key = key;
    }

    public String getValue() {
        return value;
    }

    public void setValue(String value) {
        this.value = value;
    }

    public Integer getRetryTimes() {
        return retryTimes;
    }

    public void setRetryTimes(Integer retryTimes) {
        this.retryTimes = retryTimes;
    }

    public String getTopic() {
        return topic;
    }

    public void setTopic(String topic) {
        this.topic = topic;
    }

    public Long getNextTime() {
        return nextTime;
    }

    public void setNextTime(Long nextTime) {
        this.nextTime = nextTime;
    }

    public ProducerRecord parse() {
        Integer partition = null;
        Long timestamp = System.currentTimeMillis();
        List<Header> headers = new ArrayList<>();
        ByteBuffer retryTimesBuffer = ByteBuffer.allocate(4);
        retryTimesBuffer.putInt(retryTimes);
        retryTimesBuffer.flip();
        headers.add(new RecordHeader(RetryRecord.KEY_RETRY_TIMES, retryTimesBuffer));

        ProducerRecord sendRecord = new ProducerRecord(
                topic, partition, timestamp, key, value, headers);
        return sendRecord;
    }
}
标签: kafka java 分布式

本文转载自: https://blog.csdn.net/weixin_45427648/article/details/129919206
版权归原作者 程序员无羡 所有, 如有侵权,请联系我们删除。

“Kafka:消费者消费失败处理-重试队列”的评论:

还没有评论