0


hudi搭建【大数据比赛长期更新】

hudi搭建

题目分析

本任务需要使用root用户完成相关配置,具体要求如下:
1、 从宿主机/opt目录下将maven相关安装包复制到容器Master中的/opt/software(若路径不存在,则需新建)中,将maven相关安装包解压到/opt/module/目录下(若路径不存在,则需新建)并配置maven本地库为/opt/software/RepMaven/,远程仓库使用阿里云镜像,配置maven的环境变量,并在/opt/下执行mvn
-v,将运行结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;

<mirror><id>nexus-aliyun</id><mirrorOf>central</mirrorOf><name>Nexus aliyun</name><url>http://maven.aliyun.com/nexus/content/groups/public</url></mirror>

要求:

  1. root用户完成
  2. 宿主机和docker容器文件的传输,使用docker cp命令
  3. 搭建maven,配置阿里云仓库

2、 从宿主机/opt目录下将Hudi相关安装包复制到容器Master中的/opt/software(若路径不存在,则需新建)中,将Hudi相关安装包解压到/opt/module/目录下(若路径不存在,则需新建),将命令复制并粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;

要求:

  1. 宿主机和docker容器文件的传输,使用docker cp命令
  2. tar文件的解压

3、完成解压安装及配置后使用maven对Hudi进行构建(spark3.1,scala-2.12),编译完成后与Spark集成,集成后使用spark-shell操作Hudi,将spark-shell启动使用spark-shell运行下面给到的案例,并将最终查询结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下。
(提示:编译需要替换以下内容:
1.将父模块pom.xml替换;
2.hudi-common/src/main/java/org/apache/hudi/common/table/log/block/HoodieParquetDataBlock.java替换;
2. 将packaging/hudi-spark-bundle/pom.xml替换
3.将packaging/hudi-utilities-bundle/pom.xml替换

importorg.apache.hudi.QuickstartUtils._
importscala.collection.JavaConversions._
importorg.apache.spark.sql.SaveMode._
importorg.apache.hudi.DataSourceReadOptions._
importorg.apache.hudi.DataSourceWriteOptions._
importorg.apache.hudi.config.HoodieWriteConfig._
importorg.apache.hudi.common.model.HoodieRecord

val tableName ="hudi_trips_cow"val basePath ="file:///tmp/hudi_trips_cow"val dataGen =new DataGenerator

val inserts = convertToStringList(dataGen.generateInserts(10))val df = spark.read.json(spark.sparkContext.parallelize(inserts,2))
df.write.format("hudi").
  options(getQuickstartWriteConfigs).
  option(PRECOMBINE_FIELD_OPT_KEY,"ts").
  option(RECORDKEY_FIELD_OPT_KEY,"uuid").
  option(PARTITIONPATH_FIELD_OPT_KEY,"partitionpath").
  option(TABLE_NAME, tableName).
  mode(Overwrite).
  save(basePath)val tripsSnapshotDF = spark.read.format("hudi").load(basePath +"/*/*/*/*")
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
spark.sql("select fare, begin_lon, begin_lat, ts from  hudi_trips_snapshot where fare > 20.0").show()

要求:

  1. 配置hudi,题目中已经给出修改位置,并说明替换?比赛中服务器可能会给pom文件,选手只需要替换即可
  2. 使用maven对hudi进行构建,需注意使用spark和scala的版本
  3. hudi与spark的集成
  4. 使用spark-shell运行给定的案例

搭建部署

由于当前没有提供hudi-0.12版本的安装包,需要自己去官网去下载,解压完以后使用idea进行配置操作

  1. 修改中央仓库地址(hudi/pom.xml)
<repository><id>nexus-aliyun</id><name>nexus-aliyun</name><url>http://maven.aliyun.com/nexus/content/groups/public/</url><releases><enabled>true</enabled></releases><snapshots><enabled>false</enabled></snapshots></repository>
  1. 修改版本(hudi/pom.xml)
<hadoop.version>3.1.3</hadoop.version><hive.version>3.1.2</hive.version>
  1. 修改代码兼容(\hudi-release-0.12.0\hudi-common\src\main\java\org\apache\hudi\common\table\log\block\HoodieParquetDataBlock.java)在这里插入图片描述
  2. 安装kafka依赖到本地仓库(需要注意参数需要加引号),如依赖没有找到可以联系我
  1. common-config-5.3.4.jar
  2. common-utils-5.3.4.jar
  3. kafka-avro-serializer-5.3.4.jar
  4. kafka-schema-registry-client-5.3.4.jar
mvn install:install-file "-DgroupId=io.confluent""-DartifactId=common-config""-Dversion=5.3.4""-Dpackaging=jar -Dfile=./common-config-5.3.4.jar"
mvn install:install-file "-DgroupId=io.confluent""-DartifactId=common-utils""-Dversion=5.3.4""-Dpackaging=jar -Dfile=./common-utils-5.3.4.jar"
mvn install:install-file "-DgroupId=io.confluent""-DartifactId=kafka-avro-serializer""-Dversion=5.3.4""-Dpackaging=jar -Dfile=./kafka-avro-serializer-5.3.4.jar"
mvn install:install-file "-DgroupId=io.confluent""-DartifactId=kafka-schema-registry-client""-Dversion=5.3.4""-Dpackaging=jar -Dfile=./kafka-schema-registry-client-5.3.4.jar"
  1. 修改hudi-spark-bundle的pom文件
hudi-0.12.0/packaging/hudi-spark-bundle/pom.xml 

<!-- Hive --><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-service</artifactId><version>${hive.version}</version><scope>${spark.bundle.hive.scope}</scope><exclusions><exclusion><artifactId>guava</artifactId><groupId>com.google.guava</groupId></exclusion><exclusion><groupId>org.eclipse.jetty</groupId><artifactId>*</artifactId></exclusion><exclusion><groupId>org.pentaho</groupId><artifactId>*</artifactId></exclusion></exclusions></dependency><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-service-rpc</artifactId><version>${hive.version}</version><scope>${spark.bundle.hive.scope}</scope></dependency><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-jdbc</artifactId><version>${hive.version}</version><scope>${spark.bundle.hive.scope}</scope><exclusions><exclusion><groupId>javax.servlet</groupId><artifactId>*</artifactId></exclusion><exclusion><groupId>javax.servlet.jsp</groupId><artifactId>*</artifactId></exclusion><exclusion><groupId>org.eclipse.jetty</groupId><artifactId>*</artifactId></exclusion></exclusions></dependency><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-metastore</artifactId><version>${hive.version}</version><scope>${spark.bundle.hive.scope}</scope><exclusions><exclusion><groupId>javax.servlet</groupId><artifactId>*</artifactId></exclusion><exclusion><groupId>org.datanucleus</groupId><artifactId>datanucleus-core</artifactId></exclusion><exclusion><groupId>javax.servlet.jsp</groupId><artifactId>*</artifactId></exclusion><exclusion><artifactId>guava</artifactId><groupId>com.google.guava</groupId></exclusion></exclusions></dependency><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-common</artifactId><version>${hive.version}</version><scope>${spark.bundle.hive.scope}</scope><exclusions><exclusion><groupId>org.eclipse.jetty.orbit</groupId><artifactId>javax.servlet</artifactId></exclusion><exclusion><groupId>org.eclipse.jetty</groupId><artifactId>*</artifactId></exclusion></exclusions></dependency><!-- 增加hudi配置版本的jetty --><dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-server</artifactId><version>${jetty.version}</version></dependency><dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-util</artifactId><version>${jetty.version}</version></dependency><dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-webapp</artifactId><version>${jetty.version}</version></dependency><dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-http</artifactId><version>${jetty.version}</version></dependency>
  1. 修改hudi-utilities-bundle的pom文件
hudi-0.12.0/packaging/hudi-utilities-bundle/pom.xml

  <!-- Hoodie --><dependency><groupId>org.apache.hudi</groupId><artifactId>hudi-common</artifactId><version>${project.version}</version><exclusions><exclusion><groupId>org.eclipse.jetty</groupId><artifactId>*</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.hudi</groupId><artifactId>hudi-client-common</artifactId><version>${project.version}</version><exclusions><exclusion><groupId>org.eclipse.jetty</groupId><artifactId>*</artifactId></exclusion></exclusions></dependency><!-- Hive --><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-service</artifactId><version>${hive.version}</version><scope>${utilities.bundle.hive.scope}</scope><exclusions><exclusion><artifactId>servlet-api</artifactId><groupId>javax.servlet</groupId></exclusion><exclusion><artifactId>guava</artifactId><groupId>com.google.guava</groupId></exclusion><exclusion><groupId>org.eclipse.jetty</groupId><artifactId>*</artifactId></exclusion><exclusion><groupId>org.pentaho</groupId><artifactId>*</artifactId></exclusion></exclusions></dependency><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-service-rpc</artifactId><version>${hive.version}</version><scope>${utilities.bundle.hive.scope}</scope></dependency><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-jdbc</artifactId><version>${hive.version}</version><scope>${utilities.bundle.hive.scope}</scope><exclusions><exclusion><groupId>javax.servlet</groupId><artifactId>*</artifactId></exclusion><exclusion><groupId>javax.servlet.jsp</groupId><artifactId>*</artifactId></exclusion><exclusion><groupId>org.eclipse.jetty</groupId><artifactId>*</artifactId></exclusion></exclusions></dependency><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-metastore</artifactId><version>${hive.version}</version><scope>${utilities.bundle.hive.scope}</scope><exclusions><exclusion><groupId>javax.servlet</groupId><artifactId>*</artifactId></exclusion><exclusion><groupId>org.datanucleus</groupId><artifactId>datanucleus-core</artifactId></exclusion><exclusion><groupId>javax.servlet.jsp</groupId><artifactId>*</artifactId></exclusion><exclusion><artifactId>guava</artifactId><groupId>com.google.guava</groupId></exclusion></exclusions></dependency><dependency><groupId>${hive.groupid}</groupId><artifactId>hive-common</artifactId><version>${hive.version}</version><scope>${utilities.bundle.hive.scope}</scope><exclusions><exclusion><groupId>org.eclipse.jetty.orbit</groupId><artifactId>javax.servlet</artifactId></exclusion><exclusion><groupId>org.eclipse.jetty</groupId><artifactId>*</artifactId></exclusion></exclusions></dependency><!-- 增加hudi配置版本的jetty --><dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-server</artifactId><version>${jetty.version}</version></dependency><dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-util</artifactId><version>${jetty.version}</version></dependency><dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-webapp</artifactId><version>${jetty.version}</version></dependency><dependency><groupId>org.eclipse.jetty</groupId><artifactId>jetty-http</artifactId><version>${jetty.version}</version></dependency>
  1. 编译
mvn clean package "-DskipTests""-Dspark3.1""-Dscala-2.12""-Dhadoop.version=3.1.3""-Pflink-bundle-shade-hive3"
  1. packaging包下的每个模块的target目录下就是最终我们所需要的jar包

在这里插入图片描述

  1. 将编译好的hudi-spark、hudi-hadoop包拷贝到spark安装目录的jars下
  2. 启动spark-shell,配置启动序列化参数
spark-shell --conf "spark.serializer=org.apache.spark.serializer.KryoSerializer"
  1. 将题目中给的案例直接复制到shell中运行

在这里插入图片描述

欢迎一起交流,有问题欢迎指正!!

标签: 大数据 spark java

本文转载自: https://blog.csdn.net/qq_52612109/article/details/130841810
版权归原作者 do{a++b++}while(a&b) 所有, 如有侵权,请联系我们删除。

“hudi搭建【大数据比赛长期更新】”的评论:

还没有评论