0


如何在云服务器上跑深度学习的代码?(ResNet50为例)

个人简介:南京邮电大学,计算机科学与技术,在读本科
兴趣领域:数据结构、C/C++


文章目录


一、选择一款云服务器

● 小编选择的 “矩池云”,感觉操作比较方便,也能跑通代码。

矩池云官网https://www.matpool.com。

● 一进去,经过一些 “操作” 能获得

5

元的体验金,可以用来练手。


二、上传代码和数据

● 然后打开

个人中心

,进入

我的网盘

,点击

上传

来把本地的代码和数据上传上来。【如下图所示】

● 为了快速练手,小编已经把代码和数据封装好了。

● ResNet50 + 猫狗数据集(25000张):https://pan.baidu.com/s/1tIVcJOS6FsO5KDCriusisA,提取码:xwdd

在这里插入图片描述


三、解压“代码和数据的压缩包”

● 点击左上角的

主机市场

,再点击

CPU

,进入准备租用 CPU 来解压。【如下图所示】

在这里插入图片描述


● 随便选一款就可以。【如下图所示】

在这里插入图片描述


● 随便选一个就可以,小编一般选

PyTorch 1.7.1

,然后点击

下单

。【如下图所示】

在这里插入图片描述


● 然后会自动跳出

租用界面

,等待一会儿后会出现下面两个

链接

,点击

JupyterLab链接

在这里插入图片描述


● 再点击

Terminal

,进入服务器终端。

在这里插入图片描述


● 然后我们依次输入以下代码来解压

代码

数据

:【如下图所示】

cd /mnt
unzip ResNet50-Test-CSDN.zip
unzip cat-dog-all-data.zip

:解压图片会花费较长时间(≈1min)。另外,

cat-dog-all-data.zip

解压得到的是名为

test-dataset

的文件夹。

在这里插入图片描述


● 解压完后,再返回

租用界面

,点击

停止并释放

。之后去看看

我的网盘

,就会变成下图:

在这里插入图片描述


四、训练 ResNet50 神经网络

● 点击左上角的

主机市场

,再点击

GPU

,进入准备租用 GPU 来训练。【如下图所示】

在这里插入图片描述


● 选一个关于

Pytorch

的配置(因为小编的 ResNet50 是基于它所写的),小编一般选

PyTorch 1.7.1

,然后点击

下单

。【如下图所示】

在这里插入图片描述


● 然后我们依次输入以下代码来训练:

cd /mnt
python main.py test-dataset

main.py

就是

ResNet50代码

test-dataset

25000

张猫狗数据集,已按

9:1

的比例划分成训练集和测试集。批训练大小:

batch_size = 64

。二分类。

在这里插入图片描述

● 至此,基本的操作就写完了。如果需要涉及多 GPU 分布式训练,就要同时租用多个 GPU 即可。

● 如果说代码出错,会在这个终端框中提示出来。但是如果要改代码,只得在本地改好,再上传,再解压,再跑。这样有点麻烦。但小编还是用的这种比较笨的方法,最后完成了项目。

● 另外有一种解决方案,可以用本地的 PyCharm 远程连接服务器进行及时的调试。但这个需要

专业版的PyCharm

,要 money,小编还没用过,以后有机会再来做这方面的研究的话,再补一篇博文吧。


ps:为了写一篇 1:1 的指南篇,专门用室友的手机重新注册了一个账号,一步一步地截图来写的… ⭐️ ⭐️


本文转载自: https://blog.csdn.net/Wang_Dou_Dou_/article/details/123613519
版权归原作者 一支王同学 所有, 如有侵权,请联系我们删除。

“如何在云服务器上跑深度学习的代码?(ResNet50为例)”的评论:

还没有评论