0


Kafka源码分析(四) - Server端-请求处理框架

系列文章目录

Kafka源码分析-目录

一. 总体结构

先给一张概览图:
在这里插入图片描述

服务端请求处理过程涉及到两个模块:kafka.networkkafka.server

1.1 kafka.network

该包是kafka底层模块,提供了服务端NIO通信能力基础。

有4个核心类:SocketServer、Acceptor、Processor、RequestChannel。各自角色如下:

  • SocketServer:服务端的抽象,是服务端通信的入口;
  • Acceptor:Reactor通信模式中处理连接ACCEPT事件的线程/线程池所执行的任务;
  • Processor:Reactor通信模式中处理连接可读/可写事件的线程/线程池所执行的任务;
  • RequestChannel:请求队列,存储已经解析好的请求以等待处理;

对于上层模块而言,该基础模块有两个输入和一个输出

  1. 输入:IP+端口号,该模块会对目标端口实现监听;
  2. 输出:解析好的请求,通过RequestChannel进行输出;
  3. 输入:待发送的Response,通过Processor.responseQueue来完成输入;

1.2 kafka.server

该包在kafka.network的基础上实现各种请求的处理逻辑,主要包含KafkaServer和KafkaApis两个类。其中:

  • KafkaServer:Kafka服务端的抽象,统一维护Kafka服务端的各流程和状态;
  • KakfaApis:维护了各类请求对应的业务逻辑,通过KafkaServer.apis字段组合到KafkaServer之中;

二. Server的端口监听

整体流程如图:
在这里插入图片描述

接下来按调用顺序依次分析各方法

2.1 KafkaServer.startup()

关于端口监听的核心逻辑分4步,代码如下(用注释说明各部分的目的):

def startup(){// 省略无关代码......// 1. 创建SocketServer
  socketServer =new SocketServer(config, metrics, time, credentialProvider)// 2. 启动端口监听// (在这里完成了Acceptor的创建和端口ACCEPT事件的监听)// (startupProcessors = false表示暂不启动Processor处理线程)
  socketServer.startup(startupProcessors =false)// 3. 启动请求处理过程中的相关依赖// (这也是第2步中不启动Processor处理线程的原因,有依赖项需要处理)......// 4. 启动端口可读/可写事件处理线程(即Processor线程)
  socketServer.startProcessors()// 省略无关代码......}

2.2 SocketServer.startup(Boolean)

代码及说明性注释如下:

def startup(startupProcessors:Boolean=true){this.synchronized {// 省略无关代码......// 1. 创建Accetpor和Processor的实例,// 同时页完成了Acceptor对端口ACCEPT事件的监听
    createAcceptorAndProcessors(config.numNetworkThreads, config.listeners)// 2. [可选]启动各Acceptor对应的Processor线程if(startupProcessors){
      startProcessors()}}}

2.3 ScocketServer.createAcceptorAndProcessor()

直接上注释版的代码,流程分3步:

// 入参解释// processorsPerListener: 对于每个IP:Port, 指定Reactor模式子线程池大小, //                        即处理端口可读/可写事件的线程数(Processor线程);// endpoints: 接收请求的IP:Port列表;def createAcceptorAndProcessors(processorsPerListener:Int,
                                endpoints: Seq[EndPoint]):Unit= synchronized {// 省略无关代码......

    endpoints.foreach { endpoint =>// 省略无关代码......// 1. 创建Acceptor对象// 在此步骤中调用Acceptor.openServerSocket, 完成了对端口ACCEPT事件的监听val acceptor =new Acceptor(endpoint, sendBufferSize, recvBufferSize, brokerId, connectionQuotas)// 2. 创建了与acceptor对应的Processor对象列表// (这里并未真正启动Processor线程)
      addProcessors(acceptor, endpoint, processorsPerListener)// 3. 启动Acceptor线程
      KafkaThread.nonDaemon(s"kafka-socket-acceptor-$listenerName-$securityProtocol-${endpoint.port}", acceptor).start()// 省略无关代码......}}

2.4 Acceptor.openServerSocket()

该方法中没什么特殊点,就是java NIO的标准流程:

def openServerSocket(host:String, port:Int): ServerSocketChannel ={// 1. 构建InetSocketAddress对象val socketAddress =if(host ==null|| host.trim.isEmpty)new InetSocketAddress(port)elsenew InetSocketAddress(host, port)// 2. 构建ServerSocketChannel对象, 并设置必要参数值val serverChannel = ServerSocketChannel.open()
  serverChannel.configureBlocking(false)if(recvBufferSize != Selectable.USE_DEFAULT_BUFFER_SIZE)
    serverChannel.socket().setReceiveBufferSize(recvBufferSize)// 3. 端口绑定, 实现事件监听try{
    serverChannel.socket.bind(socketAddress)
    info("Awaiting socket connections on %s:%d.".format(socketAddress.getHostString, serverChannel.socket.getLocalPort))}catch{case e: SocketException =>thrownew KafkaException("Socket server failed to bind to %s:%d: %s.".format(socketAddress.getHostString, port, e.getMessage), e)}// 4. 返回ServerSocketChannel对象, 用于后续register到Selector中
  serverChannel
}

2.5 SocketServer.startProcessor()

从这步开始,仅剩的工作就是启动Processor线程,代码都非常简单。比如本方法只是遍历Acceptor列表,并调用Acceptor.startProcessors()

def startProcessors():Unit= synchronized {
  acceptors.values.asScala.foreach { _.startProcessors()}
  info(s"Started processors for ${acceptors.size} acceptors")}

2.6 Acceptor.startProcessors()

该方法很简明,直接上代码

def startProcessors():Unit= synchronized {if(!processorsStarted.getAndSet(true)){
    startProcessors(processors)}}def startProcessors(processors: Seq[Processor]):Unit= synchronized {
  processors.foreach { processor =>
    KafkaThread.nonDaemon(s"kafka-network-thread-$brokerId-${endPoint.listenerName}-${endPoint.securityProtocol}-${processor.id}",
      processor).start()}}

三. 请求/响应的格式

3.1 格式概述

在这里插入图片描述
请求和响应都由两部分组成:Header和Body。RequestHeader中包含ApiKey、ApiVersion、CorrelationId、ClientId;ResponseHeader中只包含CorrelationId字段。接下来逐个讲解这些字段。

  • ApiKey2字节整型,指明请求的类型;比如0代表Produce请求,1代表Fetch请求;具体id和请求类型之间的映射关系可在 org.apache.kafka.common.protocol.ApiKeys 中找到;
  • ApiVersion随着API的升级迭代,各类型请求的请求体格式可能有变更;这个2字节的整型指明了请求体结构的版本;
  • CorrelationId4字节整型,在Response中传回,Kafka Server端不处理,用于客户端内部关联业务数据;
  • ClientId可变长字符串,标识客户端;

3.2 请求体/响应体的具体格式

各业务操作(比如Produce、Fetch等)对应的请求体和响应体格式都维护在 org.apache.kafka.common.protocol.ApiKeys 中。接下来以Produce为例讲解ApiKeys是如何表达数据格式的。

ApiKeys是个枚举类,其核心属性如下:

publicenumApiKeys{// 省略部分代码......// 上文提到的请求类型对应的idpublicfinalshort id;// 业务操作名称publicfinalString name;// 各版本请求体格式publicfinalSchema[] requestSchemas;// 各版本响应体格式publicfinalSchema[] responseSchemas;// 省略部分代码......}

其中PRODUCE枚举项的定义如下

PRODUCE(0,"Produce",ProduceRequest.schemaVersions(),ProduceResponse.schemaVersions())

可以看到各版本的请求格式维护在 ProduceRequest.schemaVersions(),代码如下

publicstaticSchema[]schemaVersions(){returnnewSchema[]{PRODUCE_REQUEST_V0,PRODUCE_REQUEST_V1,PRODUCE_REQUEST_V2,PRODUCE_REQUEST_V3,PRODUCE_REQUEST_V4,PRODUCE_REQUEST_V5,PRODUCE_REQUEST_V6};}

这里只是简单返回了一个Schema数组。一个Schema对象代表了一种数据格式。请求头中的ApiVersion指明了请求体的格式对应数组的第几项(从0开始)。

接下来我们看看Schema是如何表达数据格式的。其结构如下
在这里插入图片描述
Schema有两个字段:fields和fieldsByName。其中fields是体现数据格式的关键,它指明了字段的排序和各字段类型;而fieldsByName只是按字段名重新组织的Map,用于根据名称查找对应字段。

BoundField只是Field的简单封装。Field有两个核心字段:name和type。其中name表示字段名称,type表示字段类型。常见的Type如下:

Type.BOOLEAN;Type.INT8;Type.INT16;Type.INT32;// 可通过org.apache.kafka.common.protocol.types.Type查看全部类型......

回到PRODUCE API,通过查看Schema的定义,能看到其V0版本的请求体和响应体的结构如下:
在这里插入图片描述

四. 请求的处理流程

在这里插入图片描述

  1. Acceptor监听到ACCEPT事件(TCP创建连接"第一次握手"的SYN);
  2. Acceptor将将连接注册到Processor列表内的其中一个,由该Processor监听这个连接的后续可读可写事件;
  3. Processor接收到完整请求后,会将Request追加到RequestChannel中进行排队,等待后续处理;
  4. KafkaServer中有个requestHandlerPool的字段,KafkaRequestHandlerPool类型,代表请求处理线程池;KafkaRequestHandler就是其中的线程,会从RequestChannel拉请求进行处理;
  5. KafkaRequestHandler将拉到的Request传入KafkaApis.handle(Request)方法进行处理;
  6. KafkaApis根据不同的ApiKey调用不同的方法进行处理,处理完毕后会将Response最终写入对应的Processor的ResponseQueue中等待发送;KafkaApis.handle(Request)的方法结构如下:def handle(request: RequestChannel.Request){try{// 省略部分代码...... request.header.apiKey match{case ApiKeys.PRODUCE => handleProduceRequest(request)case ApiKeys.FETCH => handleFetchRequest(request)case ApiKeys.LIST_OFFSETS => handleListOffsetRequest(request)case ApiKeys.METADATA => handleTopicMetadataRequest(request)case ApiKeys.LEADER_AND_ISR => handleLeaderAndIsrRequest(request)// 省略部分代码......}}catch{case e: FatalExitError =>throw e case e: Throwable => handleError(request, e)}finally{ request.apiLocalCompleteTimeNanos = time.nanoseconds }}
  7. Processor从自己的ResponseQueue中拉取待发送的Respnose;
  8. Processor将Response发给客户端;

五. 总结

才疏学浅,未能窥其十之一二,随时欢迎各位交流补充。若文章质量还算及格,可以点赞收藏加以鼓励,后续我继续更新。

另外也可以在目录中找到同系列的其他文章:
Kafka源码分析系列-目录(收藏关注不迷路)
感谢阅读。

标签: kafka 中间件 java

本文转载自: https://blog.csdn.net/hao2244/article/details/138031222
版权归原作者 村口老张头 所有, 如有侵权,请联系我们删除。

“Kafka源码分析(四) - Server端-请求处理框架”的评论:

还没有评论