0


选择正确的错误度量标准:MAPE与sMAPE的优缺点

MSE,RMSE,MAE,MAPE,sMAPE…等等有大量不同的错误度量标准,每个错误度量标准都有其优点和缺点,并且涉及的案例比以前更多。那么,如何决定要为我们的项目使用哪种指标呢?

我相信回答这个问题的关键是了解这些最流行的度量标准的优势和局限性。这样,我们就可以选择最适合手头任务的度量标准。这就是为什么在本文中我将介绍我最近使用的两个度量标准。

MAPE 平均绝对百分比误差(Mean Absolute Percentage Error)

平均绝对百分比误差是用于评估预测性能的最受欢迎的指标之一。由以下公式给出。

其中A_t代表实际值,而F_t是预测值。在这种情况下,如果我们正在做一般回归问题(预测一个人的体重或房屋价格),我们可以将t解释为观察值,或者将其解释为时间序列分析中的时间指数。

该公式通常包括将值乘以100%,以百分比形式表示数字。

优点

  • 以百分比表示,与比例无关,可用于比较不同比例的预测。我们应该记住,虽然MAPE的值可能超过100%。
  • 易于向利益相关者解释。

缺点

  • 当实际值为零时,MAPE会采用未定义的值,例如在需求预测中可能会发生这种情况。此外,当实际值非常接近零时,它将采用极值。
  • MAPE是不对称的,它对负误差(当预测值高于实际值时)要比对正误差施加更大的罚款。解释如下:对于过低的预测,百分比误差不能超过100%。虽然没有太高的预测上限。因此,MAPE将偏向于预测不足而不是过度预测的模型。
  • MAPE假定变量的度量单位具有有意义的零值。因此,尽管预测需求并使用MAPE是有意义的,但当预测温度以摄氏度(不仅是那个)表示时,却没有意义,因为温度具有任意零点。
  • MAPE并非到处都是可微的,在将其用作优化标准时可能会导致问题。

sMAPE 对称平均绝对百分比误差(symmetric Mean Absolute Percentage Error )

在讨论了MAPE之后,我们还将介绍它的建议替代方案之一—对称MAPE。本来可以克服上述不对称性,即预测的无限性高于实际情况。

那里有几种不同版本的sMAPE。另一种流行且普遍接受的方法是在分母的中加上绝对值,以说明当实际值和预测值均等于0时,sMAPE不确定。

优点

  • 以百分比表示。
  • 修复了原始MAPE的缺点-它同时具有下限(0%)和上限(200%)。

缺点

  • 当真实值和预测值都非常接近零时不稳定。发生这种情况时,我们将处理非常接近零的数字除法。
  • sMAPE可以取负值,因此对“绝对百分比误差”的解释可能会产生误导。
  • 0%到200%的范围解释起来不那么直观,因此通常会忽略sMAPE公式的分母中的2除法。
  • 每当实际值或预测值为0时,sMAPE都会自动达到上边界值。
  • 关于有意义的零值,与MAPE相同的假设。
  • sMAPE在修正无边的不对称性的同时,引入了另一种由公式的分母引起的微妙的不对称性。想象两个案例。在第一个中,我们有A = 100和F =120。sMAPE为18.2%。现在是一个非常相似的情况,其中A = 100,F =80。在这里,我们得出的sMAPE为22.2%。

结论

在本文中,我描述了对回归问题进行性能评估的两种流行方法。虽然它可以解决MAPE的一些缺点,但仍然存在一些问题,并且还会创建一些新问题。您可以调查的其他一些指标是:

平均绝对比例误差(MASE)

平均方向精度(MDA)

准确率的对数(预测值与实际值的比率)

标签:

“选择正确的错误度量标准:MAPE与sMAPE的优缺点”的评论:

还没有评论